Skip to main content

Image Enhancement, Feature Extraction and Geospatial Analysis in an Archaeological Perspective

  • Chapter
  • First Online:

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 16))

Abstract

The goal of image processing for archaeological applications is to enhance spatial patterns and/or local anomalies linked to ancient human activities and traces of palaeo-environments still fossilized in the modern landscape. In order to make the satellite data more meaningful for archaeologists and more exploitable for investigations, reliable data processing may be carried out. Over the years a great variety of digital image enhancement techniques have been devised for specific application fields according to data availability. Nevertheless, only recently these methods have captured great attention also in the field of archaeology for an easier extraction of quantitative information using effective and reliable semiautomatic data processing. The setting up of fully-automatic methodologies is a big challenge to be strategically addressed by research communities in the next years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexakis D, Sarris A, Astaras Th, Albanakis K (2009) Detection of Neolithic settlements in Thessaly (Greece) through multispectral and hyperspectral satellite imagery. Sensors 9:1167–1187

    Article  Google Scholar 

  • Aminzadeh B, Samani F (2006) Identifying the boundaries of the historical site of Persepolis using remote sensing. Remote Sens Environ 102:52–62

    Article  Google Scholar 

  • Anselin L (1995) Local Indicators of Spatial Association LISA. Geogr Anal 27:93–115

    Article  Google Scholar 

  • Beck A (2006) Google earth and world wind: remote sensing for the masses? Antiquity 80:308

    Google Scholar 

  • Beck A, Philip A, Abdulkarim M, Donoghue D (2007) Evaluation of Corona and Ikonos high resolution satellite imagery for archaeological prospection in western Syria. Antiquity 81:161–175

    Google Scholar 

  • Bewley R, Donoghue D, Gaffney V, Van Leusen M, Wise A (1999) Archiving aerial photography and remote sensing data: a guide to good practice. Oxbow, Oxford

    Google Scholar 

  • Bloisi F, Ebanista C, Falcone L, Vicari L (2010) Infrared image analysis and elaboration for archaeology: the case study of a medieval “capsella” from Cimitile, Italy. Appl Phys B Laser Opt 101(1–2):471–479

    Google Scholar 

  • Brown Vega M, Craig N, Asencios Lindo G (2011) Ground truthing of remotely identified fortifications on the Central Coast of Perú. J Archaeol Sci 38:1680–1689

    Article  Google Scholar 

  • Brown CT, Witschey WRT (2003) The fractal geometry of ancient Maya settlement. J Archaeol Sci 30:1619–1632

    Article  Google Scholar 

  • Burke A, Eberta D, Cardille J, Dauth D (2008) Paleoethology as a tool for the development of archaeological models of land-use: the Crimean Middle Palaeolithic. J Archaeol Sci 35(4):894–904

    Article  Google Scholar 

  • Campana S (2003) Ikonos-2 multispectral satellite imagery to the study of archaeological landscapes: an integrated multi-sensor approach in combination with “Traditional” methods. In: Proceedings of the 30th conference CAA, Heraklion, 2–6 April 2002, pp 219–225

    Google Scholar 

  • Campana S (2004) Le immagini da satellite nell’indagine archeologica: stato dell’arte, casi di studio, prospettive. Archeologia Aerea. Studi di Aerotopogr Archeol 1:279–299

    Google Scholar 

  • Campana S, Forte M (eds) (2006) From space to place. In: Proceedings of the 2nd international conference on remote sensing in archaeology, Roma, 4–7 Dec 2006, BAR International Series 1568. Archaeopress, Oxford

    Google Scholar 

  • Campana S, Francovich R (2003) Landscape archaeology in Tuscany: cultural resource management, remotely sensed techniques, GIS based data integration and interpretation. In: The reconstruction of archaeological landscapes through digital technologies, Boston, 2001, BAR International Series 1151. Archaeopress, Oxford, pp 15–28

    Google Scholar 

  • Ceccato P, Flasse S, Tarantola S, Jacquemoud S, Gregoire JM (2001) Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens Environ 77(1):22–33

    Article  Google Scholar 

  • Ceccato P, Flasse S, Gregoire J-M (2002a) Designing a spectral index to estimate vegetation water content from remote sensing data: part 2: validation and applications. Remote Sens Environ 82(2–3):198–207

    Article  Google Scholar 

  • Ceccato P, Gobron N, Flasse S, Pinty B, Tarantola S (2002b) Designing a spectral index to estimate vegetation water content from remote sensing data: part 1: theoretical approach. Remote Sens Environ 82(2–3):188–197

    Article  Google Scholar 

  • Chen CM, Hepner GF, Forster RR (2003) Fusion of hyperspectral and radar data using the IHS transformation to enhance urban surface features. J Photogramm Remote Sens 58:19–30

    Article  Google Scholar 

  • Clark CD, Garrod SM, Parker Pearson M (1998) Landscape archaeology and remote sensing in southern Madagascar. Int J Remote Sens 19(8):1461–1477

    Article  Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial processes, models, and applications. Pion, London

    Google Scholar 

  • Crist EP, Cicone RC (1984) A physically-based transformation of thematic mapper data: the TM tasseled cap. IEEE T Geosci Remote Sens GE22(33):256–263

    Article  Google Scholar 

  • Crist EP, Kauth RJ (1986) The tasseled cap de mystified. Photogramm Eng Remote Sens 52(1):81–86

    Google Scholar 

  • Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36(5):961–1005

    Article  Google Scholar 

  • Davis CH, Wang X (2003) Planimetric accuracy of Ikonos 1 m panchromatic orthoimage products and their utility for local government GIS basemap applications. Int J Remote Sens 24(22):4267–4288

    Article  Google Scholar 

  • Deroin J-P, Téreygeol F, Heckes J (2011) Evaluation of very high to medium resolution multispectral satellite imagery for geoarchaeology in arid regions – case study from Jabali, Yemen. J Archaeol Sci 38:101–114

    Article  Google Scholar 

  • Drake NA (1997) Recent aeolian origin of superficial gypsum crusts in Southern Tunisia: geomorphological, archaeological and remote sensing evidence. Earth Surf Proc Land 22:641–656

    Article  Google Scholar 

  • ENVI (1999) Users guide, research systems. Boulder, Colorado

    Google Scholar 

  • ERDAS (1999) Field guide, 5th edn. ERDAS, Inc., Atlanta

    Google Scholar 

  • Estes JE, Jensen JR, Tinney LR (1977) The use of historical photography for mapping archaeological sites. J Field Archaeol 4(4):441–447

    Google Scholar 

  • Farge M (1992) Wavelet transform and their applications to turbolence. Ann Rev Fluid Mech 24:395–457

    Article  Google Scholar 

  • Fourty T, Baret F (1998) On spectral estimates of fresh leaf biochemistry. Int J Remote Sens 19(7):1283–1297

    Article  Google Scholar 

  • Fowler MJF (1996) High resolution satellite imagery in archaeological application: a Russian satellite photograph of the Stonehenge region. Antiquity 70:667–671

    Google Scholar 

  • Fritz LW (1996) The era of commercial earth observation satellites. Photogramm Eng Remote Sens 62(1):39–45

    Google Scholar 

  • Gatrell AC, Bailey TC, Diggle PJ, Rowlingson BS (1996) Spatial point pattern analysis and its application in geographical epidemiology. Trans Inst Br Geogr 21:256–271

    Article  Google Scholar 

  • Geary RC (1954) The contiguity ratio and statistical mapping. Inc Stat 5:115–145

    Google Scholar 

  • Getis A, Ord JK (1994) The analysis of spatial association by use of distance statistics. Geogr Anal 24:189–206

    Article  Google Scholar 

  • Giardino M (2011) A history of NASA remote sensing contributions to archaeology. J Archaeol Sci 38:2003–2009

    Article  Google Scholar 

  • Gitelson AA, Kaufman Y, Merzlyak MN (1996) Use of green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ 58:289–298

    Article  Google Scholar 

  • Grøn O, Palmer S, Stylegar F-A, Aase S, Esbensen K, Kucheryavski S, Sigurd A (2011) Interpretation of archaeological small-scale features in spectral images. J Archaeol Sci 38:2024–2030

    Article  Google Scholar 

  • Haralick RM, Sternberg SR, Zhuang X (1987) Image analysis using mathematical morphology. IEEE Trans Pattern Anal Mach Intell 4:532–550

    Article  Google Scholar 

  • Horne JH (2003) A tasselled cap transformation for IKONOS images. In: ASPRS 2003 annual conference proceedings, Anchorage, 5–9 May 2003

    Google Scholar 

  • Howey MCL (2011) Multiple pathways across past landscapes: circuit theory as a complementary geospatial method to least cost path for modeling past. J Archaeol Sci. doi:10.1016/j.jas.2011.03.024

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309

    Article  Google Scholar 

  • Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Wiley, West Sussex, 534 p

    Google Scholar 

  • Jackson TJ, Chen D, Cosh M et al (2004) Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybean. Remote Sens Environ 92:475–482

    Article  Google Scholar 

  • Kaufman YJ, Tanrer D (1992) Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Geosci Remote Sens 30:261–270

    Article  Google Scholar 

  • Kauth RJ, Thomas GS (1976) The Tasseled cap – a graphical description of the spectral-temporal development of agricultural crops as seen by Landsat. In: Proceedings of the symposium on machine processing of remotely sensed data, Purdue University, West Lafayette, 29 June–1 July 1976, pp 4B41–4B51

    Google Scholar 

  • Kennedy D, Bishop MC (2011) Google earth and the archaeology of Saudi Arabia. A case study from the Jeddah area. J Archaeol Sci 38:1284–1293

    Article  Google Scholar 

  • Kouchoukos N (2001) Satellite images and Near Eastern landscapes. Near East Archaeol 64(1–2):80–91

    Article  Google Scholar 

  • Lasaponara R, Masini N (2006a) On the potential of panchromatic and multispectral Quickbird data for archaeological prospection. Int J Remote Sens 27:3607–3614

    Article  Google Scholar 

  • Lasaponara R, Masini N (2006b) Identification of archaeological buried remains based on Normalized Difference Vegetation Index (NDVI) from Quickbird satellite data. IEEE Geosci Remote Sens 3(3):325–328

    Article  Google Scholar 

  • Lasaponara R, Masini N (2007a) Detection of archaeological crop marks by using satellite QuickBird multispectral imagery. J Archaeol Sci 34:214–221

    Article  Google Scholar 

  • Lasaponara R, Masini N (2007b) Improving satellite Quickbird – based identification of landscape archaeological features trough tasselled cup transformation and PCA. In: 21st CIPA symposium, Atene, 1–6 giugno 2007

    Google Scholar 

  • Lasaponara R, Masini N (2010) Facing the archaeological looting in Peru by local spatial autocorrelation statistics of very high resolution satellite imagery. In: Taniar D et al (eds) Proceedings of ICSSA, the 2010 international conference on computational science and its application, Fukuoka, 23–26 Mar 2010. Springer, Berlin, pp 261–269

    Google Scholar 

  • Lasaponara R, Masini N (2011) Satellite remote sensing in archaeology: past, present and future. J Archaeol Sci 38:1995–2002

    Article  Google Scholar 

  • Lasaponara R, Masini N, Scardozzi G (2008) Satellite based archaeological research in ancient territory of Hierapolis. In: 1st international EARSeL workshop. Advances in remote sensing for archaeology and cultural heritage management, CNR, Rome, 30 Sept–4 Oct 2008. Aracne, Rome, pp 11–16

    Google Scholar 

  • Lasaponara R, Masini N, Rizzo E, Coluzzi R, Orefici G (2011) New discoveries in the Piramide Naranjada in Cahuachi (Peru) using satellite, Ground Probing Radar and magnetic investigations. J Archaeol Sci 38:2031–2039

    Article  Google Scholar 

  • Lillesand TM, Kiefer RW (2000) Remote sensing and image interpretation. Wiley, New York

    Google Scholar 

  • Masini N, Lasaponara R (2006) Satellite-based recognition of landscape archaeological features related to ancient human transformation. J Geophys Eng 3:230–235. doi:10.1088/1742-2132/3/3/004

    Article  Google Scholar 

  • Masini N, Lasaponara R (2007) Investigating the spectral capability of QuickBird data to detect archaeological remains buried under vegetated and not vegetated areas. J Cult Herit 8(1):53–60

    Article  Google Scholar 

  • Miller WC (1957) Uses of aerial photographs in archaeological field work. Am Antiq 23(1):46–62

    Article  Google Scholar 

  • Moran P (1948) The interpretation of statistical maps. J R Stat Soc A 10:243–251

    Google Scholar 

  • Murgante B, Las Casas G, Danese M (2008) The periurban city: geo-statistical methods for its definition, Urban and regional data management. Taylor & Francis Group, London, pp 473–485

    Google Scholar 

  • Parcak S (2009) Satellite remote sensing for archaeology. Routledge, Abingdon/New York

    Google Scholar 

  • Pellemans AH, Jordans RW, Allewijn R (1993) Merging multispectral and panchromatic spot images with respect to the radiometric properties of the sensor. Photogramm Eng Remote Sens 59(1):81–87

    Google Scholar 

  • Pinty B, Verstraete MM (1992) GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio 101:15–20

    Article  Google Scholar 

  • Reeves DM (1936) Aerial photography and archaeology. Am Antiq 2(2):102–107

    Article  Google Scholar 

  • Richards JA, Jia X (2006) Remote sensing digital image analysis – hardback, 4th edn. Springer, Berlin/Hiedelberg, 476 p

    Google Scholar 

  • Sarris A, Jones R (2000) Geophysical and related techniques applied to archaeological survey in the Mediterranean: a review. J Mediterr Archaeol 13(1):3–75

    Google Scholar 

  • Saunders RW (1990) The determination of broad band surface albedo from AVHRR visible and near-infrared radiances. Int J Remote Sens 11:49–67

    Article  Google Scholar 

  • Sever TL (1998) Validating prehistoric and current social phenomena upon the landscape of Peten, Guatemala. In: Liverman D, Moran EF, Rinfuss RR, Stern PC (eds) People and pixels: linking remote sensing and social science. National Academy Press, Washington, DC

    Google Scholar 

  • Sheets P, Sever T (1988) High tech wizardry. Archaeology 41(6):28–35

    Google Scholar 

  • Soille P (2003) Morphological image analysis: principles and applications. Springer, Berlin

    Google Scholar 

  • Spennemann DHR (1987) Experiences with mapping sites on aerial photographs. J Field Archaeol 14(2):255

    Article  Google Scholar 

  • Stein C, Cullen B (1994) Satellite imagery and archaeology – a case study from Nikopolis. Am J Archaeol 98(2):326

    Google Scholar 

  • Stone KH (1964) A guide to the interpretation and analysis of aerial photographs. Ann Assoc Am Geogr 54(3):318–328

    Article  Google Scholar 

  • Strahler A, Strahler A (1997) Physical geography: science and systems of the human environment. Wiley, New York

    Google Scholar 

  • Sussman R, Green G, Sussman I (1994) Satellite imagery, human ecology, anthropology, and deforestation in Madagascar. Human Ecol 22(3):333–354

    Article  Google Scholar 

  • Telesca L, Coluzzi R, Lasaponara R (2009) Urban pattern morphology time variation in Southern Italy by using Landsat imagery. In: Murgante B, Borruso G, Lapucci A (eds) Geocomputation & urban planning, vol SCI 176. Springer, Heidelberg, pp 209–222

    Chapter  Google Scholar 

  • Toutin T (2001) DEM generation from new VIR sensors: IKONOS, ASTER and Landsat-7. In: IEEE-IGARSS proceedings, Sydney, 9–13 July 2001

    Google Scholar 

  • Toutin T (2002) DEM from stereo Landsat 7 ETM + data over high relief areas. Int J Remote Sens 23(10):2133–2139

    Article  Google Scholar 

  • Traviglia A (2008) The combinatorial explosion: defining procedures to reduce data redundancy and to validate the results of processed hyperspectral images. In: Proceedings of the 1st international EARSeL workshop. Advances in remote sensing for archaeology and cultural heritage management, CNR, Rome, 30 Sept–4 Oct 2008. Aracne, Rome, pp 23–26

    Google Scholar 

  • Traviglia A, Cottica D (2011) Remote sensing applications and archaeological research in the Northern Lagoon of Venice: the case of the lost settlement of constanciacus. J Archaeol Sci 38:2040–2050

    Article  Google Scholar 

  • Treitz PM, Howarth PJ (2000) High spatial resolution remote sensing data for forest ecosystem classification: – an examination of spatial scale. Remote Sens Environ 52:268–289

    Article  Google Scholar 

  • Tucker CJ (1980) Remote sensing of leaf water content in the near infrared. Remote Sens Environ 10:23–32

    Article  Google Scholar 

  • Urwin N, Ireland T (1992) Satellite imagery and landscape archaeology: an interim report on the environmental component of the Vinhais Landscape Archaeology Project, North Portugal. Mediterr Archaeol 5:121–131

    Google Scholar 

  • Ustin SL, Roberts DA, Jacquemoud S, Pinzon J, Gardner M, Scheer GJ, Castaneda CM, Palacios A (1998) Estimating canopy water content of chaparral shrubs using optical methods. Remote Sens Environ 65:280–291

    Article  Google Scholar 

  • Wang Z, Bovik AC (2002) A universal image quality index. IEEE Signal Proc Lett 9(3):81–84

    Article  Google Scholar 

  • Wang X-Y, Yang H-Y, Fu Z-K (2010) A new wavelet-based image denoising using undecimated discrete wavelet transform and least squares support vector machine. Expert Syst Appl 37(10):7040–7049

    Article  Google Scholar 

  • Weber SA, Yool SR (1999) Detection of subsurface archaeological architecture by computer assisted airphoto interpretation. Geoarchaeology 14(6):481–493

    Article  Google Scholar 

  • Wilson DR (2000) Air photo interpretation for archaeologists. Tempus, Stroud

    Google Scholar 

  • Zarco-Tejada PJ, Rueda CA, Ustin SL (2003) Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sens Environ 85:109–124

    Article  Google Scholar 

  • Zeng P, Dong H, Chi J, Xu X (2004) An approach for wavelet based image enhancement. In: Proceedings of IEEE international conference on robotics and biomimetics, ROBIO, Shenyang, 22–26 Aug 2004, pp 574–577

    Google Scholar 

  • Zhang H, Bevan A, Fuller D, Fang Y (2010) Archaeobotanical and GIS-based approaches to prehistoric agriculture in the upper Ying valley, Henan, China. J Archaeol Sci 37(7): 1480–1489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Lasaponara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lasaponara, R., Masini, N. (2012). Image Enhancement, Feature Extraction and Geospatial Analysis in an Archaeological Perspective. In: Lasaponara, R., Masini, N. (eds) Satellite Remote Sensing. Remote Sensing and Digital Image Processing, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8801-7_2

Download citation

Publish with us

Policies and ethics