Skip to main content

Earliest Seafloor Hydrothermal Systems on Earth: Comparison with Modern Analogues

  • Chapter
  • First Online:
Earliest Life on Earth: Habitats, Environments and Methods of Detection

Abstract

Recent developments in multiple sulfur isotope analysis of sulfide and sulfate minerals provide a new tool for investigation of ore-forming processes and sources of sulfur in Archean hydrothermal systems, with important implications for the Archean sulfur cycle, the origin and impact of various microbial metabolisms and the chemistry of surface waters. In the current study we show that most of the sulfides and sulfates in the 3.49 Ga Dresser Formation and 3.24 Ga Panorama Zn–Cu field of Western Australia have non zero Δ33S values that indicate variable proportions of seawater sulfate and elemental sulfur of UV-photolysis origin were incorporated into the deposits. Our results show that the multiple sulfur isotope systematics of the Dresser Formation sulfides and sulfates mainly reflect mixing between mass independently fractionated sulfur reservoirs with positive and negative Δ33S. Pyrite occurring with barite is depleted in 34S relative to the host barite that has been interpreted as evidence for microbial sulfate reduction. We note, however, that the reported quadruple sulfur isotope systematics of pyrite-barite pairs are equally permissive of a thermochemical origin for this pyrite, which is consistent with inferred formation temperatures for the chert-barite units in excess of 100°C. The variably positive Δ33S anomalies of the Panorama VHMS deposits, disequilibrium relations among sulfides and sulfates and general trend of increasing sulfide Δ33S with stratigraphic height in individual ore systems most likely reflects temperature evolution and fluid mixing through the life of the hydrothermal system. The absence of sulfides with significant negative Δ33S anomalies suggests that volcanic sulfur, not seawater sulfate, was the dominant sulfur source for the Panorama mineral system. The data presented here require Paleoarchean seawater to be at least locally sulfate bearing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allwood AC, Walter MR, Kamber BS et al (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441(7094):714–718

    Google Scholar 

  • Allwood AC, Walter MR, Burch IW et al (2007) 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem-scale insights to early life on Earth. Precambr Res 158(3–4):198–227

    Google Scholar 

  • Aizawa J (1990) Paleotemperatures from fluid inclusions and coal rank of carbonaceous material of the Tertiary formations in northwestern Kyushu, Japan. J Jap Assoc Min Petrol Econ Geol 85:145–154

    Google Scholar 

  • Bao HM, Rumble D, Lowe DR (2007) The five stable isotope compositions of Fig Tree barites: Implications on sulfur cycle in ca. 3.2 Ga oceans. Geochim Cosmochim Acta 71:4868–4879

    Google Scholar 

  • Barley ME (1993) Volcanic, sedimentary and tectonostratigraphic environments of the 3.46 Ga Warrawoona Megasequence: a review. Precambr Res 60:47–67

    Google Scholar 

  • Barley ME (1998) Archaean volcanic-hosted massive sulphides. AGSO J Aust Geol Geophys 17:69–73

    Google Scholar 

  • Baublys KA, Golding SD, Young E et al (2004) Simultaneous determination of d33SV-CDT and d34SV-CDT using masses 48, 49 and 50 on a continuous flow isotope ratio mass spectrometer. Rapid Communications in Mass Spectrometry 18:2765–2769

    Google Scholar 

  • Bekker A, Holland HD, Wang PL et al (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120

    Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP et al (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81

    Google Scholar 

  • Brasier M, Green O, Lindsay J et al (2004) Earth’s oldest ( 3.5 Ga) fossils and the ‘Early Eden hypothesis’: questioning the evidence. Orig Life Evol Biosph 34:257–269

    Google Scholar 

  • Brasier MD, Green OR, Lindsay JF et al (2005) Critical testing of Earth’s oldest putative fossil assemblage from the 3.5 Ga Apex chert, Chinaman Creek, Western Australia. Precambr Res 140:55–102

    Google Scholar 

  • Brauhart CW (1999) Regional alteration systems associated with Archean volcanogenic massive sulfide deposits at Panorama, Pilbara, Western Australia. Unpublished Ph.D., Department of Geology and Geophysics, University of Western Australia, Perth

    Google Scholar 

  • Brauhart CW, Groves DI, Morant P (1998) Regional alteration systems associated with volcanogenic massive sulfide mineralization at Panorama, Pilbara, Western Australia. Econ Geol 93:292–302

    Google Scholar 

  • Brauhart CW, Huston DL, Andrew AS (2000) Oxygen isotope mapping in the Panorama VMS district, Pilbara Craton, Western Australia: applications to estimating temperatures of alteration and to exploration. Miner Deposita 35:727–740

    Google Scholar 

  • Buick R, Dunlop JSR (1990) Evaporitic sediments of Early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37:247–277

    Google Scholar 

  • Buick R, Brauhart CW, Morant P et al (2002) Geochronology and stratigraphic relationships of the Sulphur Springs Group and Strelley granite: a temporally distinct igneous province in the Archaean Pilbara Craton, Australia. Precambr Res 114:87–120

    Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36

    Google Scholar 

  • Canfield DE, Raiswell R (1999) The evolution of the sulfur cycle. Am J Sci 299:697–723

    Google Scholar 

  • Canfield DE, Thamdrup B, Fleischer S (1998) Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfur-disproportionating bacteria. Limnol Oceanogr 43:253–264

    Google Scholar 

  • Cates NL, Mojzsis SJ (2006) Chemical and isotopic evidence for widespread Eoarchean metasedimentary enclaves in southern West Greenland. Geochim Cosmochim Acta 70:4229–4257

    Google Scholar 

  • Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta 27:43–52

    Google Scholar 

  • Corliss JB, Baross JA, Hofmann SE (1981) An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanologica Acta Suppl 4:59–69

    Google Scholar 

  • de Ronde CEJ, Channer DM, Faure K et al (1997) Fluid chemistry of Archean seafloor hydrothermal vents: implications for the composition of circa 3.2 Ga seawater. Geochim Cosmochim Acta 61:4025–4042

    Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128

    Google Scholar 

  • Duck LJ, Glikson M, Golding SD et al (2004) Characteristics of organic matter in sediments from the 3.24 Ga Sulphur Springs VHMS deposit, Western Australia. Geochim Cosmochim Acta Suppl 68(11S):A798

    Google Scholar 

  • Duck LJ, Glikson M, Golding SD et al (2005) Early Archaean carbonaceous material from the Pilbara, Western Australia: its nature, characteristics and possible sources. Geochim Cosmochim Acta Suppl 69:A861

    Google Scholar 

  • Duck LJ, Glikson M, Golding SD et al (2007) Microbial remains and other carbonaceous forms from the 3.24 Ga Sulphur Springs black smoker deposit, Western Australia. Precambr Res 154:205–220

    Google Scholar 

  • Eastoe CJ, Compston W, Williams IS et al (1990) Sulfur isotopes in Early Proterozoic volcanogenic massive sulfide deposits: new data from Arizona and implications for ocean chemistry. Precambr Res 46:353–364

    Google Scholar 

  • Ertem G (2004) Montmorillonite, oligonucleotides, RNA and origin of life. Orig Life Evol Biosph 34:549–570

    Google Scholar 

  • Farquhar J, Wing BA (2003) Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet Sci Lett 213:1–13

    Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758

    Google Scholar 

  • Farquhar J, Savarini J, MH AS et al (2001) Observation of wavelength-sensitive mass-independent effects during SO2 photolysis: implications for the early atmosphere. J Geophys Res 106:32829–32839

    Google Scholar 

  • Farquhar J, Peters M, Johnston DT et al (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449:706–709

    Google Scholar 

  • Faure G, Mensing TM (2005) Isotopes: principles and applications, 3rd edn. Wiley, New Jersey

    Google Scholar 

  • Fedo CM, Whitehouse MJ (2002) Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth’s earliest life. Science 296:448–1452

    Google Scholar 

  • Fiebig J, Woodland AB, Spangenberg J et al (2007) Natural evidence for rapid abiogenic hydrothermal generation of CH4. Geochim Cosmochim Acta 71:3028–3039

    Google Scholar 

  • Früh-Green GL, Kelley DD, Bernascono SM (2003) 30,000 years of hydrothermal activity at the Lost City vent field. Science 301:495–498

    Google Scholar 

  • Galtier N, Tourasse N, Gouy M (1999) A nonhyperthermophilic common ancestor to extant life forms. Science 283:220–221

    Google Scholar 

  • Gemmell JB, Sharpe R, Jonasson IR et al (2004) Sulfur isotope evidence for magmatic contributions to submarine and subaerial gold mineralization: conical Seamount and Ladolam Gold Deposit, Papua New Guinea. Econ Geol 99:1711–1726

    Google Scholar 

  • Glikson M, Duck LJ, Golding SD et al (2008) Microbial remains in some Earth oldest rocks: comparison with Methanocaldococcus jannaschii, a potential analogue. Precambr Res 164:87–200

    Google Scholar 

  • Glikson M, Hickman A, Duck LJ et al (2010) Integration of observational and analytical methodologies to characterize organic matter in early Archaean rocks: distinguishing biological from abiotically synthesized CM structures. Chapter 8, 88 to 2010

    Google Scholar 

  • Golding, SD, Young E (2005) Multiple sulfur isotope evidence for dual sulfur sources in the 3.24 Ga Sulphur Springs deposit. Geochim Cosmochim Acta Suppl 69(10):A449

    Google Scholar 

  • Golding SD, Young E, Duck LJ et al (2006) Multiple sulfur isotope constraints on microbial processes in Archaean seafloor environments. Geochim Cosmochim Acta Suppl 70(18):A208

    Google Scholar 

  • Green MG, Sylvester PJ, Buick R (2000) Growth and recycling of early Archaean continental crust: geochemical evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia. Tectonophysics 322:69–88

    Google Scholar 

  • Habicht KS, Gade M, Thamdrup B et al (2002) Calibration of sulfate levels in the Archean ocean. Science 298:2372–2374

    Google Scholar 

  • Harris AC, White NC, McPhie J et al (2009) Early Archean hot springs above epithermal veins, North Pole, Western Australia: new insights from fluid inclusion microanalysis. Econ Geol 104:793–814

    Google Scholar 

  • Henley RW (1996) Chemical and physical context for life in terrestrial hydrothermal systems: chemical reactors for the early development of life and hydrothermal ecosystems. In: Bock GR, Goode JA (eds) Evolution of hydrothermal ecosystems on Earth (and Mars?). Wiley, New York

    Google Scholar 

  • Hickman AH, Van Kranendonk MJ (2004) Diapiric processes in the formation of Archaean continental crust, East Pilbara granite-greenstone terrane, Australia. In: Eriksson PG, Altermann W, Nelson DR et al (eds) The Precambrian Earth: tempos and events. Elsevier, Amsterdam/Boston; Dev Precambr Geol 12:118–139

    Google Scholar 

  • Hofmann A, Bolhar R (2007) Carbonaceous cherts in the Barberton Greenstone Belt and their significance for the study of early life in the Archean record. Astrobiology 7:355–388

    Google Scholar 

  • Holm NG, Charlou JL (2001) Initial indications of abiotic formation of hydrocarbons in the rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge. Earth Planet Sci Lett 191:1–8

    Google Scholar 

  • Hu G, Rumble D, Wang PL (2003) An ultraviolet laser microprobe for the in situ analysis of multisulfur isotopes and its use in measuring Archean sulfur isotope mass-independent anomalies. Geochim Cosmochim Acta 67:3101–3117

    Google Scholar 

  • Hulston JR, Thode HG (1965) Variations in the S33, S34 and S36 contents of meteorites and their relation to chemical and nuclear effects. J Geophys Res 70:3475–3484

    Google Scholar 

  • Huston DL (1999) Stable isotopes and their significance for understanding the genesis of volcanic-hosted massive sulfide deposits: a review. Rev Econ Geol 8:157–179

    Google Scholar 

  • Huston DL, Logan GA (2004) Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere. Earth Planet Sci Lett 220:41–55

    Google Scholar 

  • Huston DL, Brauhart CW, Drieberg SL et al (2001) Metal leaching and inorganic sulfate reduction in volcanic-hosted massive sulfide mineral systems: evidence from the paleo-Archean panorama district, Western Australia. Geology 29:687–690

    Google Scholar 

  • Jamieson JW, Wing BA, Hannington MD et al (2006) Evaluating isotopic equilibrium among sulfide mineral pairs in Archean ore deposits: case study from the Kidd Creek VMS deposit, Ontario, Canada. Econ Geol 101:1055–1061

    Google Scholar 

  • Kakegawa T, Ohmoto H (1999) Sulfur isotope evidence for the origin of 3.4 to 3.1 Ga pyrite at the Princeton gold mine, Barberton Greenstone Belt, South Africa. Precambr Res 96:209–224

    Google Scholar 

  • Kakegawa T, Kawai H, Ohmoto H (1999) Origins of pyrites in the 2.5 Ga Mt McRae Shale, the Hamersley District, Western Australia. Geochim Cosmochim Acta 62:3205–3220

    Google Scholar 

  • Kamber BS, Whitehouse MJ (2007) Micro-scale sulphur isotope evidence for sulphur cycling in the late Archean shallow ocean. Geobiology 5:5–17

    Google Scholar 

  • Kamber BS, Collerson KD, Moorbath S et al (2003) Inheritance of early Archaean Pb-isotope variability from long-lived Hadean protocrust. Contr Miner Petrol 145:25–46

    Google Scholar 

  • Kasting JF (2001) The rise of atmospheric oxygen. Science 293:819–820

    Google Scholar 

  • Kaufman AJ, Johnston DT, Farquhar J et al (2007) Late Archean biospheric oxygenation and atmospheric evolution. Science 317:1900–1903

    Google Scholar 

  • Kelley DS, Karson JA, Früh-Green GL et al (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307:1428–1434

    Google Scholar 

  • Kitajima K, Maruyama S, Utsunomiya S et al (2001) Seafloor hydrothermal alteration at an Archaean mid-ocean ridge. J Metamorph Geol 19:583–599

    Google Scholar 

  • Kramers JD, Tolstikhin IN (1997) Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust. Chem Geol 139:75–110

    Google Scholar 

  • Krapez B (1993) Sequence stratigraphy of the Archaean supracrustal belts of the Pilbara Block, Western Australia. Precambr Res 60:1–45

    Google Scholar 

  • Land LS, Lynch FL (1996) δ18O values of mudrocks: more evidence for an 18O-buffered ocean. Geochim Cosmochim Acta 60:3347–3352

    Google Scholar 

  • Lécuyer C, Allemand P (1999) Modelling of the oxygen isotope evolution of seawater: implications for the climate interpretation of the δ18O of marine sediments. Geochim Cosmochim Acta 63:351–361

    Google Scholar 

  • Lindsay JF, Brasier MD, McLoughlin N et al (2005) The problem of deep carbon – an Archean paradox. Precambr Res 143:1–22

    Google Scholar 

  • Macleod G, McKeown C, Hall AJ et al (1994) Hydrothermal and oceanic pH conditions at 4 Ga relevant to the origin of life. Orig Life Evol Biosph 24:19–41

    Google Scholar 

  • Martin W, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Phil Trans R Soc B 362:1887–1925

    Google Scholar 

  • Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6:805–814

    Google Scholar 

  • Matsuhisa Y, Goldsmith JR, Clayton RN (1979) Oxygen isotope fractionation in the system quartz-albite-anorthite-water. Geochim Cosmochim Acta 43:1131–1140

    Google Scholar 

  • McCollom TM, Seewald JS (2007) Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem Rev 107:382–401

    Google Scholar 

  • Mojzsis SJ, Coath CD, Greenwood JP et al (2003) Mass-independent isotope effect in Archaean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis. Geochim Cosmochim Acta 67:1635–1658

    Google Scholar 

  • Morant P (1995) The Panorama Zn–Cu VMS deposits, Western Australia. AIG Bull 16:75–84

    Google Scholar 

  • Morant P (1998) Panorama zinc-copper deposits. In: Berkman DA, Mackenzie DH (eds) Geology of Australian and Papua New Guinean mineral deposits. The Australasian Institute of Mining and Metallurgy, Melbourne

    Google Scholar 

  • Muehlenbachs K (1998) The oxygen isotopic composition of the oceans, sediments and the seafloor. Chem Geol 145:263–273

    Google Scholar 

  • Nijman W, de Bruijne KCH, Valkering ME (1998) Growth fault control of Early Archaean cherts, barite mounds and chert-barite veins, North Pole dome, Eastern Pilbara, Western Australia. Precambr Res 88:25–52

    Google Scholar 

  • Nijman W, de Bruijne KCH, Valkering ME (1999) Growth fault control of Early Archaean cherts, barite mounds and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia (Part 2). Precambr Res 95:247–274

    Google Scholar 

  • Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York

    Google Scholar 

  • Ohmoto H, Mizukami M, Drummond SE et al (1983) Chemical processes of Kuroko formation. Econ Geol Mongr 5:570–604

    Google Scholar 

  • Ohmoto H, Watanabe Y, Ikemi H et al (2006) Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442:908–911

    Google Scholar 

  • Ono S, Eigenbrode JL, Pavlov AA et al (2003) New insights into Archaean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia. Earth Planet Sci Lett 213:15–30

    Google Scholar 

  • Ono S, Shanks WC III, Rouxel OJ et al (2007) S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochim Cosmochim Acta 71:1170–1182

    Google Scholar 

  • Ono S, Kaufman AJ, Farquhar J et al (2009) Lithofacies control on multiple-sulfur isotope records and Neoarchean sulfur cycles. Precambr Res 169:58–67

    Google Scholar 

  • Orberger B, Rouchon V, Westall F et al (2006) Microfacies and origin of some Archean cherts (Pilbara, Australia). In: Reimold WU, Gibson RL (eds) Processes on the early Earth. Geol Soc Am Spec Pap 405:133–156

    Google Scholar 

  • Papineau D, Mojzsis SJ (2006) Mass-independent fractionation of sulfur isotopes in sulfides from the pre-3770 Ma Isua Supracrustal Belt, West Greenland. Geobiology 4:227–238

    Google Scholar 

  • Partridge MA, Golding SD, Baublys KA et al (2008) Pyrite paragenesis and multiple sulfur isotope distribution in late Archean and early Paleoproterozoic Hamersley Basin sediments. Earth Planet Sci Lett 272:41–49

    Google Scholar 

  • Pavlov AA, Kasting JF (2002) Mass-independent fractionation of sulfur isotopes in Archaean sediments: strong evidence for an anoxic Archaean atmosphere. Astrobiology 2:27–41

    Google Scholar 

  • Pavlov AA, Kasting JF, Eigenbrode JL et al (2001) Organic haze in Earth’s early atmosphere: source of low-13C Late Archean kerogens. Geology 29:1003–1006

    Google Scholar 

  • Petersen S, Herzig PH, Hannington MD et al (2002) Submarine gold mineralization near Lihir Island, New Ireland Fore-Arc, Papua New Guinea. Econ Geol 97:1795–1814

    Google Scholar 

  • Philippot P, Van Zuilen M, Lepot K et al (2007) Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317:1534–1537

    Google Scholar 

  • Pinti DL, Mineau R, Clement V (2009) Hydrothermal alteration and microfossil artefacts of the 3,465-million-year-old Apex chert. Nat Geosci 2:640–643

    Google Scholar 

  • Poole AM, Jeffares DC, Penny D (1999) Early evolution: prokaryotes, the new kids on the block. BioEssays 21(10):880–889

    Google Scholar 

  • Proskurowksi G, Lilley MD, Seewald JS et al (2008) Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 319:604–607

    Google Scholar 

  • Robert F, Chaussidon M (2006) A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443:969–972

    Google Scholar 

  • Romero AB, Thiemens MH (2003) Mass-independent sulfur isotopic composition in present-day sulfate aerosols. J Geophys Res Atmosph 108(D16):4524

    Google Scholar 

  • Runnegar B, Dollase WA, Ketcham RA et al (2001) Early Archaean sulfates from Western Australia first formed as hydrothermal barites not gypsum evaporates. Geol Soc Am Abstr 33:A404

    Google Scholar 

  • Runnegar B, Coath DM, Lyons JR et al. (2002) Mass-independent and mass-dependent sulfur processing through the Archean. Geochim Cosmochim Acta Suppl 66(15A):A655

    Google Scholar 

  • Russell MJ (2003) Origin and evolution of life: clues from ore deposits. Inst Mining Metallurgy Trans Sec B Appl Earth Sci 112:177–178

    Google Scholar 

  • Russell MJ (2007) The alkaline solution to the emergence of life: energy, entropy and early evolution. Acta Biotheor 55:133–179

    Google Scholar 

  • Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc Lond 154:377–402

    Google Scholar 

  • Russell MJ, Hall AJ (2006) The onset and early evolution of life. In: Kesler SE, Ohmoto H (eds) Evolution of early Earth’s atmosphere, hydrosphere, and biosphere – constraints from ore deposits. Geol Soc Am Memoir 198:1–32

    Google Scholar 

  • Russell MJ, Hall AJ, Boyce AJ et al (2005) 100th Anniversary special paper: on hydrothermal convection systems and the emergence of life. Econ Geol 100:419–438

    Google Scholar 

  • Savarino J, Romero A, Cole-Dai J et al (2003) UV induced mass-independent sulfur isotope fractionation in stratospheric volcanic sulfate. Geophys Res Lett 30:2131

    Google Scholar 

  • Schardt C, Large RR (2009) New insights into the genesis of volcanic-hosted massive sulfide deposits on the seafloor from numerical modeling studies. Ore Geol Rev 35:333–351

    Google Scholar 

  • Schopf JW (1993) Microfossils of the Early Archean apex chert: new evidence of the antiquity of life. Science 260:640–646

    Google Scholar 

  • Schopf JW (2006) Fossil evidence of Archaean life. Phil Trans R Soc B 361:869–885

    Google Scholar 

  • Shanks WC, Böhlke JK, Seal RR (1995) Stable isotopes in Mid-Ocean Ridge hydrothermal systems: interactions between fluids, minerals, and organisms. In: Humphris SE, Zierenberg RA, Mullineaux LS et al (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. Geophys Monogr 91:194–221

    Google Scholar 

  • Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulfate reduction in the early Archaean era. Nature 410:77–81

    Google Scholar 

  • Shen Y, Farquhar J, Masterson A et al (2009) Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet Sci Lett 279:383–391

    Google Scholar 

  • Shock EL (1990) Geochemical constraints on the origin of organic compounds in hydrothermal systems. Orig Life Evol Biosph 20:331–367

    Google Scholar 

  • Shock EL (1996) Hydrothermal systems as environments for the emergence of life. In: Bock GR, Goode JA (eds) Evolution of hydrothermal ecosystems on Earth (and Mars?). Wiley, New York

    Google Scholar 

  • Shock EL, Schulte MD (1998) Organic synthesis during fluid mixing in hydrothermal systems. J Geophys Res 103(E12):28513–28527

    Google Scholar 

  • Sillitoe RH, Hedenquist JW (2003) Volcanotectonic settings, ore-fluid compositions and epithermal precious metal deposits. In: Simmons SF, Graham I (eds) Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the Earth. Soc Econ Geol Spec Publ 10:315–343

    Google Scholar 

  • Simoneit BRT (1995) Evidence for organic synthesis in high temperature aqueous media – facts and prognosis. Orig Life Evol Biosph 25(1–3):119–140

    Google Scholar 

  • Smith JW (2000) Isotopic fractionation accompanying sulfur hydrolysis. Geochem J 34:95–99

    Google Scholar 

  • Stetter KO (1996) Hyperthermophiles in the history of life. In: Bock GR, Goode JA (eds) Evolution of hydrothermal ecosystems on Earth (and Mars?). Wiley, New York

    Google Scholar 

  • Strauss H (2003) Sulphur isotopes and the early Archaean sulfur cycle. Precambr Res 126:349–361

    Google Scholar 

  • Summons RE, Jahnke LL, Simoneit BRT (1996) Lipid biomarkers for bacterial ecosystems: studies of cultured organisms, hydrothermal environments and ancient systems. In: Bock GR, Goode JA (eds) Evolution of hydrothermal ecosystems on Earth (and Mars?). Wiley, New York

    Google Scholar 

  • Taylor BE (1992) Degassing of H2O from rhyolite magma during eruption and shallow intrusion, and the isotopic composition of magmatic water in hydrothermal systems. Geol Surv Jpn Mem 279:190–195

    Google Scholar 

  • Terabayashi M, Masadab Y, Ozawa H (2003) Archean ocean-floor metamorphism in the North Pole area, Pilbara Craton, Western Australia. Precambr Res 127:167–180

    Google Scholar 

  • Thiemens MH (2006) History and applications of mass-independent isotope effects. Annu Rev Earth Planet Sci 34:217–262

    Google Scholar 

  • Thorpe RI, Hickman AH, Davis DW et al (1992) Constraints to models for Archaean lead evolution from precise zircon U–Pb geochronology for the Marble Bar region, Pilbara Craton, Western Australia. In: Glover JE, Ho SE (eds) The Archaean: terrains, processes and metallogeny. Geology Department and University Extension, The University of Western Australia, Western Australia

    Google Scholar 

  • Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3,616-Myr-old ocean. Nature 431:549–552

    Google Scholar 

  • Towe KM (2000) The Archaean atmosphere and sedimentary sulfides. Science 289:1297

    Google Scholar 

  • Ueno Y, Isozaki Y, Yurimoto H et al (2001) Carbon isotopic signatures of individual Archean microfossils (?) from Western Australia. Int Geol Rev 43:196–212

    Google Scholar 

  • Ueno Y, Yoshioka H, Maruyama SY et al (2004) Carbon isotopes and petrography of kerogens in 3.5-Ga hydrothermal dikes in the North Pole area, Western Australia. Geochim Cosmochim Acta 68:573–589

    Google Scholar 

  • Ueno Y, Yamada K, Yoshida N et al (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean. Nature 440:516–519

    Google Scholar 

  • Ueno Y, Ono S, Rumble D et al (2008) Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser formation: new evidence for microbial sulfate reduction in the early Archean. Geochim Cosmochim Acta 72:5675–5691

    Google Scholar 

  • Van Kranendonk MJ (1998) Litho-tectonic and structural components of the North Shaw 1:100000 sheet, Archaean Pilbara Craton. In: 1997–98 Annual Review, Geological Survey of Western Australia

    Google Scholar 

  • Van Kranendonk MJ (2006) Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: a review of the evidence from c. 3490–3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth Sci Rev 74:197–240

    Google Scholar 

  • Van Kranendonk MJ, Pirajno F (2004) Geochemistry of metabasalts and hydrothermal alteration zones associated with c. 3.45 Ga chert and barite deposits: implications for the geological setting of the Warrawoona Group, Pilbara Craton, Australia. Geochem Explor Environ Anal 4:253–278

    Google Scholar 

  • Van Kranendonk MJ, Hickman AH, Smithies RH et al (2002) Geology and tectonic evolution of the Archean North Pilbara Terrain, Pilbara Craton, Western Australia. Econ Geol 97:695–732

    Google Scholar 

  • Van Kranendonk MJ, Smithies RH, Hickman AH et al (2004) Event stratigraphy applied to 700 million years of Archaean crustal evolution, Pilbara Craton, Western Australia. In: 2003–04 Annual Review. Geological Survey of Western Australia

    Google Scholar 

  • Van Kranendonk MJ, Hickman AH, Huston DL (2006a) Geology and mineralization of the east Pilbara – a field guide. Western Australia Geological Survey, Record 2006/16

    Google Scholar 

  • Van Kranendonk MJ, Hickman AH, Smithies RH et al (2006b) Revised lithostratigraphy of Archean supracrustal and intrusive rocks in the northern Pilbara Craton, Western Australia. Western Australia Geological Survey, Record 2006/15

    Google Scholar 

  • Van Kranendonk MJ, Philippot P, Lepot K et al (2008) Geological setting of Earth’s oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambr Res 167:93–124

    Google Scholar 

  • van Zuilen MA, Lepland A, Arrhenius G (2002) Reassessing the evidence for the earliest traces of life. Nature 418:627–630

    Google Scholar 

  • Vearncombe S (1995) Volcanogenic massive sulphide-sulphate mineralisation at Strelley, Pilbara Craton, Western Australia. Unpublished PhD, Department of Geology and Geophysics, University of Western Australia, Perth

    Google Scholar 

  • Vearncombe S, Barley ME, Groves DI et al (1995) 3.26 Ga black smoker-type mineralization in the Strelley Belt, Pilbara Craton, Western Australia. J Geol Soc Lond 152:587–590

    Google Scholar 

  • Vearncombe S, Vearncombe JR, Barley ME (1998) Fault and stratigraphic controls on volcanogenic massive sulphide deposits in the Strelley Belt, Pilbara Craton, Western Australia. Precambr Res 88:67–82

    Google Scholar 

  • Walter MR (1996) Ancient hydrothermal ecosystems on Earth: a new palaeobiological frontier. In: Bock GR, Goode JA (eds) Evolution of hydrothermal ecosystems on Earth (and Mars?). Wiley, New York

    Google Scholar 

  • Watanabe Y, Farquhar J, Ohmoto H (2009) Anomalous fractionations of sulfur isotopes during thermochemical sulfate reduction. Science 324:370–373

    Google Scholar 

  • Westall F, Southam G (2006) The early record of life. In: Benn K, Marescha J-C, Condie KC (eds) Archean geodynamics and environments. American Geophysical Union, Washington, DC; Geophys Monogr Ser 164:283–304

    Google Scholar 

  • Whitehouse MJ, Kamber BS, Fedo CM et al (2005) Integrated Pb- and S-isotope investigation of sulphide minerals from the early Archaean of southwest Greenland. Chem Geol 222:112–131

    Google Scholar 

  • Williams LB, Canfield B, Voglesonger KM et al (2005) Organic molecules formed in a “primordial womb”. Geology 33:913–916

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne D. Golding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Golding, S.D., Duck, L.J., Young, E., Baublys, K.A., Glikson, M., Kamber, B.S. (2011). Earliest Seafloor Hydrothermal Systems on Earth: Comparison with Modern Analogues. In: Golding, S., Glikson, M. (eds) Earliest Life on Earth: Habitats, Environments and Methods of Detection. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8794-2_2

Download citation

Publish with us

Policies and ethics