Skip to main content

What Can Carbon Isotopes Tell Us About Sources of Reduced Carbon in Rocks from the Early Earth?

  • Chapter
  • First Online:

Abstract

Carbon isotopes have been widely used as a tool to search for evidence of life in rocks from the early Earth. Many of the oldest rocks on Earth have been found to contain isotopically light reduced carbon, which many researchers have interpreted to have a biological origin. While light carbon isotopic compositions are consistent with biologically produced organic matter, alternative non-biological sources that might also explain the data have not been given thorough consideration. A review of the isotopic composition of potential non-biological sources of reduced carbon to the early Earth indicates that many have light isotopic signatures that encompass the values found in ancient rocks, indicating that the reduced carbon in rocks from the early Archean could plausibly derive from non-biological sources. These observations indicate that the evidence for life provided by carbon isotopes remains far from conclusive, and additional criteria need to be applied before it can be convincingly determined whether the reduced carbon found in the oldest rocks on Earth has a biological or non-biological origin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrajano TA, Sturchio NC, Kennedy BM et al (1990) Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines. Appl Geochem 5:625–630

    Article  Google Scholar 

  • Alexander CMO’d, Russell SS, Arden JW et al (1998) The origin of chondritic macromolecular organic matter: a carbon and nitrogen isotope study. Earth Planet Sci 33:603–622

    Google Scholar 

  • Berner RA (2003) The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426:323–326

    Article  Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP et al (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81

    Article  Google Scholar 

  • Brasier M, McLaughlin N, Green O, Wacey D (2006) A fresh look at the fossil evidence for early Archaean cellular life. Phil Trans R Soc B 361:887–902

    Article  Google Scholar 

  • Chang S, Des Marais D, Mack R et al (1983) Prebiotic organic synthesis and the origin of life. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Charlou JL, Donval JP, Fouquet Y et al (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14´N, MAR). Chem Geol 191:345–359

    Article  Google Scholar 

  • Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132

    Article  Google Scholar 

  • Chyba CF, Thomas PJ, Brookshaw L, Sagan C (1990) Cometary delivery of organic molecules to the early Earth. Science 249:366–373

    Article  Google Scholar 

  • Cody GD, Ade H, Alexander CMO’d et al (2008) Quantitative organic and light-element analysis of comet 81P/Wild 2 particle using C-, N-, and O-μ-XANES. Meteor Planet Sci 43:353–365

    Article  Google Scholar 

  • Craig H (1953a) The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta 3:53–92

    Article  Google Scholar 

  • Craig H (1953b) Corycium defunctum: the non-indicative properties of isotopes and review articles. Econ Geol 48:600–603

    Article  Google Scholar 

  • Craig H (1954) Geochemical implications of the isotopic composition of carbon in ancient rocks. Geochim Cosmochim Acta 6:186–196

    Article  Google Scholar 

  • Cronin JR, Chang S (1993) Organic matter in meteorites: molecular and isotopic analyses of the Murchison meteorite. In: Greenburg JM, Pirronello V (eds) Chemistry of life’s origins. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Deines P (2002) The carbon isotope geochemistry of mantle xenoliths. Earth Sci Rev 58:247–278

    Article  Google Scholar 

  • Des Marais DJ, Donchin JH, Nehring NL, Truesdell AH (1981) Molecular isotopic evidence for the origin of geothermal hydrocarbons. Nature 292:826–828

    Article  Google Scholar 

  • Eigenbrode J (2008) Fossil lipids for life-detection: a case study from the early Earth record. Space Sci Rev 135:161–185

    Article  Google Scholar 

  • Eiler JM, Mojzsis SJ, Arrhenius G (1997) Carbon isotope evidence for early life. Nature 386:665

    Article  Google Scholar 

  • Fiebig J, Woodland AB, Spangenberg J, Oschmann W (2007) Natural evidence for rapid abiogenic hydrothermal generation of CH4. Geochim Cosmochim Acta 71:3028–3039

    Article  Google Scholar 

  • Garcia-Ruiz JM, Hyde ST, Carnerup AM et al (2003) Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302:1194–1197

    Article  Google Scholar 

  • Glikson M, Duck LJ, Golding SD et al (2008) Microbial remains in some earliest Earth rocks: comparison with a potential modern analog. Precambr Res 164:187–200

    Article  Google Scholar 

  • Hayes JM, Kaplan JR, Wedeking KW (1983) Precambrian organic geochemistry, preservation of the record. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Horita J (2005) Some perspectives on isotope biosignatures for early life. Chem Geol 218:171–186

    Article  Google Scholar 

  • Horita J, Berndt ME (1999) Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285:1055–1057

    Article  Google Scholar 

  • House CH, Schopf JW, Stetter KO (2003) Carbon isotope fractionation by Archaeans and other thermophilic prokaryotes. Org Geochem 34:345–356

    Article  Google Scholar 

  • Kelley DS (1996) Methane-rich fluids in the oceanic crust. J Geophys Res 101:2943–2962

    Article  Google Scholar 

  • Kelley DS, Früh-Green GL (1999) Abiogenic methane in deep-seated mid-ocean ridge environments: insights from stable isotope analyses. J Geophys Res 104:10439–10460

    Article  Google Scholar 

  • Kelley DS, Karston JA, Früh-Green GL et al (2005) A serpentinite-hosted ecosystem: The Lost City hydrothermal field. Science 307:1428–1434

    Article  Google Scholar 

  • Krishnamurthy RV, Epsteint S, Cronin JR et al (1992) Isotopic and molecular analyses of hydrocarbons and moncarboxylic acids of the Murchison meteorite. Geochim Cosmochim Acta 56:4045–4058

    Article  Google Scholar 

  • Lancet MS, Anders EA (1970) Carbon isotope fractionation in the Fischer-Tropsch synthesis and in meteorites. Science 170:980–982

    Article  Google Scholar 

  • Lindsay JF, Brasier MD, McLoughlin N et al (2005) The problem of deep carbon – an Archean paradox. Precambr Res 143:1–22

    Article  Google Scholar 

  • Mathez EA (1984) Influence of degassing on oxidation states of basaltic magma. Nature 310:371–375

    Article  Google Scholar 

  • McCollom TM (2003) Formation of meteorite hydrocarbons by thermal decomposition of siderite (FeCO3). Geochim Cosmochim Acta 67:311–317

    Article  Google Scholar 

  • McCollom TM (2008) Observational, experimental, and theoretical constraints on carbon cycling in mid-ocean ridge hydrothermal systems. In: Lowell RP, Seewald J, Perfit MR, Metaxas A (eds) Modeling hydrothermal processes at oceanic spreading centers: magma to microbe. American Geophysical Union, Washington, DC

    Google Scholar 

  • McCollom TM, Seewald JS (2006) Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet Sci Lett 243:74–84

    Article  Google Scholar 

  • McCollom TM, Seewald JS (2007) Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem Rev 107:382–401

    Article  Google Scholar 

  • McKeegan KD, Aléon J, Bradley J et al (2006) Isotopic compositions of cometary matter returned by Stardust. Science 314:1724–1728

    Article  Google Scholar 

  • Messenger S (2000) Identification of molecular-cloud material in interplanetary dust particles. Nature 404:968–971

    Article  Google Scholar 

  • Messenger S, Staderman FJ, Floss C et al (2003) Isotopic signatures of presolar materials in interplanetary dust. Space Sci Rev 106:155–172

    Article  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive Earth conditions. Science 117:528–529

    Article  Google Scholar 

  • Mojzsis SJ, Arrhenius G, McKeegan KD et al (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59

    Article  Google Scholar 

  • Naraoka H, Ohtake M, Maruyama S, Ohmoto H (1996) Non-biogenic graphite in 3.8-Ga metamorphic rocks from the Isua district, Greenland. Chem Geol 133:251–260

    Article  Google Scholar 

  • Nier AO, Gulbransen EA (1939) Variations in the relative abundance of the carbon isotopes. J Am Chem Soc 61:697–698

    Article  Google Scholar 

  • Pasek M, Lauretta D (2008) Extraterrestrial flux of potentially prebiotic C, N, and P to the early Earth. Orig Life Evol Biosph 38:5–21

    Article  Google Scholar 

  • Pavlov AA, Kasting JF, Eigenbrode JL, Freeman KH (2001) Organic haze in Earth’s early atmosphere: source of low-13C Late Archean kerogens. Geology 29:1003–1006

    Article  Google Scholar 

  • Perry EC Jr, Ahmad SN (1977) Carbon isotope composition of graphite and carbonate minerals from 3.8-AE metamorphosed sediments, Isukasia, Greenland. Earth Planet Sci Lett 36:280–284

    Article  Google Scholar 

  • Pizzarello S, Krishnamurthy RV, Epstein S, Cronin JR (1991) Isotopic analyses of amino acids from the Murchison meteorite. Geochim Cosmochim Acta 55:905–910

    Article  Google Scholar 

  • Popper K (1959) The logic of scientific discovery. Hutchinson, London

    Google Scholar 

  • Proskurowksi G, Lilley MD, Seewald JS et al (2008) Abiogenic hydrocarbon production at Lost City Hydrothermal Field. Science 319:604–607

    Article  Google Scholar 

  • Rankama K (1948) New evidence of the origin of Pre-Cambrian carbon. Bull Geol Soc Am 59:389–416

    Article  Google Scholar 

  • Rankama K (1954) The isotopic constitution of carbon in ancient rocks as an indicator of its biogenic or nonbiogenic origin. Geochim Cosmochim Acta 5:142–152

    Article  Google Scholar 

  • Rosing MT (1999) 13C-Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283:674–676

    Article  Google Scholar 

  • Salvi S, Williams-Jones AE (1997) Fischer-Tropsch synthesis of hydrocarbons during sub-solidus alteration of the Strange Lake peralkaline granite, Quebec/Laborador, Canada. Geochim Cosmochim Acta 61:83–99

    Article  Google Scholar 

  • Salvi S, Williams-Jones AE (2006) Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada. Lithos 91:19–34

    Article  Google Scholar 

  • Sandford SA (2008) Terrestrial analysis of the organic component of comet dust. Ann Rev Anal Chem 1:549–578

    Article  Google Scholar 

  • Sandford SA, Aléon J, Alexander CMO et al (2006) Organics captured from Comet 81P/Wild 2 by the Stardust spacecraft. Science 314:1720–1724

    Article  Google Scholar 

  • Schidlowski M (1988) A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–318

    Article  Google Scholar 

  • Schidlowski M (1993) The beginnings of life on Earth: evidence from the geological record. In: Greenburg JM, Mendoza-Gómez CX, Pirronello V (eds) The chemistry of life’s origins. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambr Res 106:117–134

    Article  Google Scholar 

  • Schidlowski M, Appel PWU, Eichmann R, Junge CE (1979) Carbon isotope geochemistry of the 3.7 × 109-year-old Isua sediments, West Greenland: implications for the Archaean carbon and oxygen cycles. Geochim Cosmochim Acta 43:189–199

    Article  Google Scholar 

  • Schopf JW (1993) Microfossils of the early Archean apex chert: new evidence of the antiquity of life. Science 260:640–646

    Article  Google Scholar 

  • Schopf JW, Packer BM (1987) Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73

    Article  Google Scholar 

  • Sephton MA, Verchovsky AB, Bland PA et al (2003) Investigating the variations in carbon and nitrogen isotopes in carbonaceous chondrites. Geochim Cosmochim Acta 67:2093–2108

    Article  Google Scholar 

  • Sherwood Lollar B, Frape SK, Weise SM et al (1993) Abiogenic methanogenesis in crystalline rocks. Geochim Cosmochim Acta 57:5087–5097

    Article  Google Scholar 

  • Sherwood Lollar B, Westgate TD, Ward JA et al (2002) Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 416:522–524

    Article  Google Scholar 

  • Sherwood Lollar B, Lacrampe-Couloume G, Slater GF et al (2006) Unravelling abiogenic and biogenic sources of methane in the Earth’s deep subsurface. Chem Geol 226:328–339

    Article  Google Scholar 

  • Sherwood Lollar B, Lacrampe-Couloume G, Voglesonger K et al (2008) Isotopic signatures of CH4 and higher hydrocarbon gases from Precambrian Shield sites: a model for abiogenic polymerization of hydrocarbons. Geochim Cosmochim Acta 72:4778–4795

    Article  Google Scholar 

  • Strauss H, Moore TB (1992) Abundances and isotopic compositions of carbon and sulfur species in whole rock and kerogen samples. In: Schopf JW (ed) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge

    Google Scholar 

  • Summons RE, Albrecht P, McDonald G, Moldowan JM (2008) Molecular biosignatures. Space Sci Rev 135:133–159

    Article  Google Scholar 

  • Taran YA, Kliger GA, Sevastianov VS (2007) Carbon isotope effects in the open-system Fischer-Tropsch synthesis. Geochim Cosmochim Acta 71:4474–4487

    Article  Google Scholar 

  • Thomas KL, Blanford GE, Keller LP et al (1993) Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. Geochim Cosmochim Acta 57:1551–1566

    Article  Google Scholar 

  • Ueno Y, Yurimoto H, Yoshioka H et al (2002) Ion microprobe analysis of graphite from ca. 3.8 Ga metasediments, Isua supracrustal belt, West Greenland: relationship between metamorphism and carbon isotope composition. Geochim Cosmochim Acta 66:1257–1268

    Article  Google Scholar 

  • Ueno Y, Yoshioka H, Maruyama S, Isozaki Y (2004) Carbon isotopes and petrography of kerogens in 3.5-Ga hydrothermal dikes in the North Pole area, Western Australia. Geochim Cosmochim Acta 68:573–589

    Article  Google Scholar 

  • van Zuilen MA, Lepland A, Arrhenius G (2002) Reassessing the evidence for the earliest traces of life. Nature 418:627–630

    Article  Google Scholar 

  • van Zuilen MA, Lepland A, Teranes J (2003) Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland. Precambr Res 126:331–348

    Article  Google Scholar 

  • Wickman FE (1941) On a new possibility of calculating the total amount of coal and bitumen. Geol Foren I Stolkholm Förb 63:419

    Article  Google Scholar 

  • Wickman FE, von Ubisch H (1951) Two notes on the isotopic constitution of carbon in minerals. Geochim Cosmochim Acta 1:119–122

    Article  Google Scholar 

Download references

Acknowledgments

This author’s research on this subject and preparation of this manuscript have been supported by the US National Science Foundation Earth Sciences Directorate through grants OCE-0550800 and EAR-0636056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. McCollom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

McCollom, T.M. (2011). What Can Carbon Isotopes Tell Us About Sources of Reduced Carbon in Rocks from the Early Earth?. In: Golding, S., Glikson, M. (eds) Earliest Life on Earth: Habitats, Environments and Methods of Detection. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8794-2_11

Download citation

Publish with us

Policies and ethics