Skip to main content

The Nature of the Thermal Transition Influences the Shape-Memory Behavior of Polymer Networks

  • Conference paper
  • First Online:
Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles

Abstract

Degradable shape-memory polymer networks intended for biomedical applications are highlighted. These polymer networks were synthesized from oligo(ε-caprolactone)dimethacrylate (PCL), or oligo[(L-lactide)-ran-glycolide]dimethacrylate (PLG), or from starlike hydroxytelechelic oligo[(rac-lactide)-co-glycolide] and a low molecular weight linker. While the thermal transition related to the switching phase is a melting point in case of the PCL-based materials, the switching transition of oligo[(L-lactide)-ran-glycolide]dimethacrylate networks and copolyesterurethane networks is a glass transition. In this chapter, the influence of the nature of thermal transition on the shape-memory behavior of polymer networks is described. Furthermore, different polymer network architectures are introduced, which enable the tailoring of polymer network properties as well as the shape-memory capability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alteheld A, Feng Y, Kelch S, Lendlein A (2005) Biodegradable, amorphous copolyesterurethane networks having shape-memory properties. Angew Chem Int Ed 44:1188–1192

    Article  CAS  Google Scholar 

  • Avrami M (1941) Granulation, phase change and microstructure. Kinetics of phase change. III. J Chem Phys 9:177–193

    CAS  Google Scholar 

  • Behl M, Lendlein A (2007a) Actively moving polymers. Soft Matter 3(1):58–67

    Article  CAS  Google Scholar 

  • Behl M, Lendlein A (2007b) Shape-memory polymers. Mater Today 10(4):20–28

    Article  CAS  Google Scholar 

  • Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater, in press, doi:10.1002/adma.200904447

    Google Scholar 

  • Behl M, Bellin I, Kelch S, Wagermaier W, Lendlein A (2008) One-Step Process for Creating Triple-Shape Capability of AB Polymer Networks 19:102–108

    Google Scholar 

  • Bellin I, Kelch S, Langer R, Lendlein A (2006) Polymeric triple-shape materials. Proc Natl Acad Sci 103(48):18043–18047

    Article  CAS  Google Scholar 

  • Bellin I, Kelch S, Lendlein A (2007) Dual-shape properties of triple-shape polymer networks with crystallizable network segments and grafted side chains. J Mater Chem 17(29):2885–2891

    Article  CAS  Google Scholar 

  • Bühler WJ, Gilfrich JW, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34:1475

    Article  Google Scholar 

  • Chang LC, Read TA (1951) Plastic deformation and diffusionless phase changes in metals. The gold-cadmium beta phase. Trans AIME 189:47

    Google Scholar 

  • Choi N-Y, Lendlein A (2007) Degradable shape-memory polymer networks from oligo[(L-lactide)-ran-glycolide] dimethacrylates. Soft Matter 3:901–909

    Article  CAS  Google Scholar 

  • Choi N-Y, Kelch S, Lendlein A (2006) Synthesis, shape-memory functionality and hydrolytical degradation studies on polymer networks from poly(rac-lactide)-b-poly(propylene oxide)-b-poly(rac-lactide) dimethacrylates. Adv Eng Mater 8(5):439–445

    Article  CAS  Google Scholar 

  • de Carvalho B, Bretas RES (1998) Quiescent crystallization kinetics and morphology of isotactic polypropylene resins for injection molding. I. Isothermal crystallization. J Appl Polym Sci 68(7):1159–1176

    Article  Google Scholar 

  • Feng YK, Behl M, Kelch S, Lendlein A (2008) Biodegradable multiblock copolymers based on oligodepsipeptides with shape-memory properties. Macromol Biosci 9:45–54

    Article  CAS  Google Scholar 

  • He X, Oishi Y, Takahara A, Kajiyma T (1996) Higher order structure and thermo-responsive properties of polymeric gel with crystalline side chains. Polym J 28:452–457

    Article  CAS  Google Scholar 

  • Hoffman JD, Weeks JJ (1962) Melting process and equilibrium melting temperature of poly(chlorotrifluoroethylene). J Res Natl Bur Stand Section A 66:13

    Article  Google Scholar 

  • Hu Z, Zhang X, Li Y (1995) Synthesis and application of modulated polymer gels. Science 269:525–527

    Article  CAS  Google Scholar 

  • Kelch S, Behl M, Kamlage S, Lendlein A (2009) Multiphase Polymer Networks with Shape-Memory. Mater Res Soc Symp Proc 1190:3–11

    Article  CAS  Google Scholar 

  • Kelch S, Choi NY, Wang ZG, Lendlein A (2008) Amorphous, elastic AB copolymer networks from acrylates and poly[(L-lactide)-ran-glycolide]dimethacrylates. Adv Eng Mat 10:494–502

    Article  CAS  Google Scholar 

  • Kelch S, Steuer S, Schmidt AM, Lendlein A (2007) Shape-memory polymer networks from oligo[(e-hydroxycaproate)-co-glycolate] dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromolecules 8:1018–1027

    Article  CAS  Google Scholar 

  • Lendlein A (1999) Polymere als Implantatwerkstoffe. Chem in unserer Zeit 33:279–295

    Article  CAS  Google Scholar 

  • Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed Engl 41:2034–2057

    Article  CAS  Google Scholar 

  • Lendlein A, Kelch S (2005) Degradable, multifunctional polymeric biomaterials with shape-memory. Material Science Forum, 492-493:219–223

    Article  Google Scholar 

  • Lendlein A, Langer R (2002) Biodegradable elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676

    CAS  Google Scholar 

  • Lendlein A, Schmidt AM, Langer R (2001) AB-polymer networks based on oligo(e-caprolactone)segments showing shape-memory properties. Proc Natl Acad Sci 98(3):842–847

    Google Scholar 

  • Lendlein A, Neuenschwander P, Suter UW (2000) Hydroxy-telechelic copolyesters with well defined sequence structure through ring-opening polymerization. Macromol Chem Phys 201:1067–1076

    Article  CAS  Google Scholar 

  • Lendlein A, Schmidt AM, Schroeter M, Langer R (2005) Shape-memory polymer networks from oligo(e-caprolactone)dimethacrylates. J Polym Sci Part A: Polym Chem 43:1369–1381

    Article  CAS  Google Scholar 

  • Lendlein A, Zotzmann J, Feng YK, Alteheld A, Kelch S (2009) Controlling the switching temperature of biodegradable, amorphous shape-memory poly(rac-lactide)urethane networks by incorporation of different comonomers. Biomacromolecules 10:975-982

    Article  CAS  Google Scholar 

  • Li Y, Hu Z, Chen Y (1997) Shape memory gels made by the modulated gel technology. J Appl Polym Sci 63(9):1173–1178

    Article  CAS  Google Scholar 

  • Mandelkern L (1964) Crystallization of polymers. McGraw-Hill, New York

    Google Scholar 

  • Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346

    Article  CAS  Google Scholar 

  • Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci 103(10):3540–3545

    Article  CAS  Google Scholar 

  • Narendra Kumar U, Kratz K, Wagermaier W, Behl M, Lendlein A (2010) Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field. J Mater Chem 20:3404–3415

    Article  Google Scholar 

  • Osada Y, Matsuda A (1995) Shape memory in hydrogels. Nature 376:219

    Article  CAS  Google Scholar 

  • Otsuka K, Wayman CM, Saburi T, Tadaki T, Maki T, Suzuki Y, Humbeeck JV, Stalmans R, Uchino K, Miyazaki S (1998) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  • Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12(3):150–158

    Article  CAS  Google Scholar 

  • Pena B, Delgado JA, Bello A, Perez E (1994) Crystallization kinetics of isotactic poly(1-hexadecene). Polymer 35(14):3039–3045

    Article  CAS  Google Scholar 

  • Pitt CG, Gratzl MM, Kimmel GL, Surles J, Schindler A (1981) Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (ε-caprolactone), and their copolymers in vivo. Biomaterials 2:215–220

    Article  CAS  Google Scholar 

  • Wunderlich B (1976) Macromolecular physics. Academic, New York, p 132

    Google Scholar 

  • Zotzmann J, Behl M, Hofmann D, Lendlein A (2010) Reversible Triple-Shape Effect of Polymer Networks Containing Polypentadecalactone- and Poly(ε caprolactone)-Segments. Adv Mater in press, DOI: 10.1002/adma.200904202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lendlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Lendlein, A., Behl, M., Kamlage, S. (2010). The Nature of the Thermal Transition Influences the Shape-Memory Behavior of Polymer Networks. In: Shastri, V., Altankov, G., Lendlein, A. (eds) Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8790-4_8

Download citation

Publish with us

Policies and ethics