Skip to main content

Biomimetic Approaches to Design of Tissue Engineering Bioreactors

  • Conference paper
  • First Online:
  • 1099 Accesses

Abstract

Tissue engineering is an attractive strategy to address the increasing clinical need for tissue replacement. Engineered tissues can also serve as high-fidelity models for studies of development, disease and therapeutic modalities. Cultivation of three-dimensional tissue equivalents is necessarily based on the use of bioreactors, which are designed to provide controlled steady state cultivation conditions as well as required biochemical and physical regulatory signals. In this chapter, we review the design and operation of tissue engineering bioreactors, with the focus on biomimetic approaches to provide in vivo-like environments for rapid and orderly tissue development by cells cultured on a scaffold. Specifically, we focus on bioreactors for tissue engineering of two distinctly different tissues – articular cartilage and myocardium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akins RE, Boyce RA, Madonna ML, Schroedl NA, Gonda SR, McLaughlin TA, Hartzell CR (1999) Cardiac organogenesis in vitro: reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng 5:103–118

    Article  CAS  Google Scholar 

  • Ateshian GA, Hung CT (2003) Functional properties of native articular cartilage. In: Guilak F, Butler DL, Goldstein SA, Mooney DJ (eds) Functional tissue engineering. Springer, New York, pp 46–68

    Chapter  Google Scholar 

  • Brilla CG, Maisch B, Rupp H, Sunck R, Zhou G, Weber KT (1995) Pharmacological modulation of cardiac fibroblast function. Herz 20:127–135

    CAS  Google Scholar 

  • Buckwalter JA, Mankin HJ (1997) Articular cartilage, part II: degeneration and osteoarthrosis, repair, regeneration, and transplantation. J Bone Joint Surg Am 79A:612–632

    Google Scholar 

  • Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504

    CAS  Google Scholar 

  • Bugarski B, Li Q, Goosen MFA (1994) Electrostatic droplet generation: mechanism of polymer droplet formation. AIChE J 40:1026–1031

    Article  Google Scholar 

  • Bugarski D, Obradovic B, Petakov M, Jovcic G, Stojanovic N, Bugarski B (2005) Alginate microbeads as potential support for cultivation of bone marrow stromal cells. In: Uskokovic DP, Milonjic SK, Rakovic DI (eds) Materials science forum, vol. 494. Progress in advanced materials processes. Trans Tech Publications Ltd, Zurich, pp 525–530

    Google Scholar 

  • Bursac N, Papadaki M, Cohen RJ, Schoen FJ, Eisenberg SR, Carrier R, Vunjak-Novakovic G, Freed LE (1999) Cardiac muscle tissue engineering: toward an in vitro model for electrophysio­logical studies. Am J Physiol Heart Circ Physiol 277:H433–H444

    CAS  Google Scholar 

  • Carrier RL, Papadaki M, Rupnick M, Schoen FJ, Bursac N, Langer R, Freed LE, Vunjak-Novakovic G (1999) Cardiac tissue engineering: cell seeding, cultivation parameters and tissue construct characterization. Biotechnol Bioeng 64:580–589

    Article  CAS  Google Scholar 

  • Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G (2002a) Effects of oxygen on engineered cardiac muscle. Biotechnol Bioeng 78:617–625

    Article  CAS  Google Scholar 

  • Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G (2002b) Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng 8:175–188

    Article  CAS  Google Scholar 

  • Chao PhG, Grayson W, Vunjak-Novakovic G (2007) Engineering cartilage and bone using human mesenchymal stem cells. J Orthop Sci 12:398–404

    Article  Google Scholar 

  • Connold AL, Frischknecht R, Dimitrakos M, Vrbova G (1997) The survival of embryonic cardiomyocytes transplanted into damaged host myocardium. J Muscle Res Cell Motil 18:63–70

    Article  CAS  Google Scholar 

  • Demarteau O, Jakob M, Schafer D, Heberer M, Martin I (2003a) Development and validation of a bioreactor for physical stimulation of engineered cartilage. Biorheology 40:331–336

    CAS  Google Scholar 

  • Demarteau O, Wendt D, Braccini A, Jakob M, Schafer D, Heberer M, Martin I (2003b) Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochem Biophys Res Commun 310:580–588

    Article  CAS  Google Scholar 

  • Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop 355S:S7–S21

    Article  Google Scholar 

  • Eschenhagen T, Fink C, Remmers U, Scholz H, Wattchow J, Woil J, Zimmermann WD, Schafer H, Bishopric N, Wakatsuki T, Elson E (1997) Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart model system. FASEB J 11:683–694

    CAS  Google Scholar 

  • Fink C, Ergun S, Kralisch D, Remmers U, Weil J, Eschenhagen T (2000) Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J 14:669–679

    CAS  Google Scholar 

  • Fournier RL (1998) Basic transport phenomena in biomedical engineering. Taylor & Francis, Philadelphia, PA

    Google Scholar 

  • Freed LE, Vunjak-Novakovic G (2000a) Tissue engineering bioreactors. In: Lanza RP, Langer R, Vacanti J (eds) Principles of tissue engineering. Academic, Boston, MA, pp 143–156

    Chapter  Google Scholar 

  • Freed LE, Vunjak-Novakovic G (2000b) Tissue engineering of cartilage. In: Bronzino JD (ed) The biomedical engineering handbook. CRC Press, Boca Raton, FL, pp 124-1–124-26

    Google Scholar 

  • Freed LE, Marquis JC, Vunjak-Novakovic G, Emmanual J, Langer R (1994a) Composition of cell-polymer cartilage implants. Biotechnol Bioeng 43:605–614

    Article  CAS  Google Scholar 

  • Freed LE, Vunjak-Novakovic G, Biron R, Eagles D, Lesnoy D, Barlow S, Langer R (1994b) Biodegradable polymer scaffolds for tissue engineering. Biotechnology 12:689–693

    Article  CAS  Google Scholar 

  • Freshney RI, Obradovic B, Grayson W, Cannizzaro C, Vunjak-Novakovic G (2007) Principles of tissue culture and bioreactor design. In: Lanza RP, Langer R, Vacanti J (eds) Principles of tissue engineering. Elsevier, San Deigo, CA, pp 155–183

    Chapter  Google Scholar 

  • Gray ML, Pizzanelli AM, Lee RC, Grodzinsky AJ, Swann DA (1989) Kinetics of the chondrocyte biosynthetic response to compressive load and release. Biochim Biophys Acta 991:415–425

    Article  CAS  Google Scholar 

  • Grodzinsky AJ, Levenston ME, Jin M, Frank EH (2000) Cartilage tissue remodeling in response to mechanical forces. Annu Rev Biomed Eng 2:691–713

    Article  CAS  Google Scholar 

  • Grunder T, Gaissmaier C, Fritz S, Stoop R, Hortschansky P, Mollenhauer J, Aicher WK (2004) Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthrytis Cartilage 12:559–567

    Article  Google Scholar 

  • Kiviranta I, Tammi M, Jurvelin J, Saamanen AM, Helminen HJ (1988) Moderate running exercise augments glycosaminoglycans and thickness of articular cartilage in the knee joint of young beagle dogs. J Orthop Res 6:188–195

    Article  CAS  Google Scholar 

  • Kraft MP, Riess JG, Weers JG (1998) The design and engineering of oxygen-delivering fluorocarbon emulsions. In: Benita S (ed) Submicron emulsions in drug targeting and delivery. Harwood Academic Publishers, Amsterdam, pp 235–333

    Google Scholar 

  • Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, Granot Y, Cohen S (2000) Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102:III56–III61

    Article  CAS  Google Scholar 

  • Li R-K, Jia ZQ, Weisel RD, Mickle DAG, Choi A, Yau TM (1999) Survival and function of bioengineered cardiac grafts. Circulation 100:II63–II69

    CAS  Google Scholar 

  • Li R-K, Yau TM, Weisel RD, Mickle DAG, Sakai T, Choi A, Jia ZQ (2000) Construction of a bioengineered cardiac graft. J Thorac Cardiovasc Surg 119:368–375

    Article  CAS  Google Scholar 

  • MacKenna DA, Omens JH, McCulloch AD, Covell JW (1994) Contribution of collagen matrix to passive left ventricular mechanics in isolated rat heart. Am J Physiol 266:H1007–H1018

    CAS  Google Scholar 

  • Manojlovic V, Djonlagic J, Obradovic B, Nedovic V, Bugarski B (2006) Investigation of cell immobiliyation in alginate: rheological and electrostatic extrusion studies. J Chem Technol Biotechnol 81:505–510

    Article  CAS  Google Scholar 

  • Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, Freed LE, Vunjak-Novakovic G (2000) Modulation of the mechanical properties of tissue engineered cartilage. Biorheology 37:141–147

    CAS  Google Scholar 

  • Masuda K, Sah R, Hejna M, Thonar EJ-MA (2003) A novel two–step method for the formation of tissue–engineered cartilage by mature bovine chondrocytes: the alginate–recovered–chondrocyte (ARC) method. J Orthop Res 21:139–148

    Article  CAS  Google Scholar 

  • Mauck RL, Soltz MA, Wang CCB, Wong DD, Chao PG, Valhmu WB, Hung CT, Ateshian GA (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122:252–260

    Article  CAS  Google Scholar 

  • Mauck RL, Seyhan SL, Ateshian GA, Hung CT (2002) Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann Biomed Eng 30:1046–1056

    Article  Google Scholar 

  • Mauck RL, Nicoll SB, Seyhan SL, Ateshian GA, Hung CT (2003a) Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng 9:597–611

    Article  CAS  Google Scholar 

  • Mauck RL, Wang CC-B, Oswald ES, Ateshian GA, Hung CT (2003b) The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthritis Cartilage 11:879–890

    Article  CAS  Google Scholar 

  • Mauck RL, Byers BA, Yuan X, Rackwitz L, Tuan RS (2006) Cartilage tissue engineering with MSC-laden hydrogels: effect of seeding density, exposure to chondrognic medium and loading. 52nd Annual Meeting of the Orthopaedic Research Society, Chicago, Illinois, 19–22 March 2006, Paper No: 0336

    Google Scholar 

  • O’Driscoll SW (2001) Preclinical cartilage repair: current status and future perspectives. Clin Orthop 391(Suppl):S397–S401

    Google Scholar 

  • O’Hara BP, Urban JPG, Maroudas A (1990) Influence of cyclic loading on the nutrition of articular cartilage. Ann Rheum Dis 49:536–539

    Article  Google Scholar 

  • Obradovic B, Carrier RL, Vunjak-Novakovic G, Freed LE (1999) Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol Bioeng 63:197–205

    Article  CAS  Google Scholar 

  • Obradovic B, Meldon JH, Freed LE, Vunjak-Novakovic G (2000) Glycosaminoglycan deposition in engineered cartilage: experiments and mathematical model. AIChE J 46:1860–1871

    Article  CAS  Google Scholar 

  • Obradovic B, Martin I, Freed LE, Vunjak-Novakovic G (2001) Bioreactor studies of natural and tissue engineered cartilage. Ortop Traumatol Rehabil 3:181–189

    CAS  Google Scholar 

  • Obradovic B, Bugarski D, Petakov M, Jovcic G, Stojanovic N, Bugarski B, Vunjak-Novakovic G (2004) Cell support studies aimed for cartilage tissue engineering in perfused bioreactors. In: Uskokovic DP, Milonjic SK, Rakovic DI (eds) Materials science forum, vol. 453–454. Progress in advanced materials processes. Trans Tech Publications Ltd, Zurich, pp 549–555

    Google Scholar 

  • Obradovic B, Radisic M, Vunjak-Novakovic G (2005) Tissue engineering of cartilage and myocardium. In: Nedovic V, Willaert RG (eds) Focus on biotechnology, vol. 8b. Applications of cell immobilisation biotechnology. Springer, Dordrecht/Berlin/Heidelberg/New York, pp 99–133

    Google Scholar 

  • Obradovic B, Osmokrovic A, Bugarski B, Bugarski D, Vunjak-Novakovic G (2007) Alginate microbeads as cell support for cartilage tissue engineering: bioreactor studies. In: Uskokovic DP, Milonjic SK, Rakovic DI (eds) Materials science forum, vol. 555. Progress in advanced materials processes. Trans Tech Publications Ltd, Zurich, pp 417–422

    Google Scholar 

  • Osmokrovic A, Obradovic B, Bugarski D, Bugarski B, Vunjak-Novakovic G (2006) Development of a packed bed bioreactor for cartilage tissue engineering. FME Trans 34:65–70

    Google Scholar 

  • Palmoski M, Perricone E, Brandt KD (1979) Development and reversal of a proteoglycan aggregation defect in normal canine knee cartilage after immobilization. Arthritis Rheum 22:508–517

    Article  CAS  Google Scholar 

  • Papadaki M, Bursac N, Langer R, Merok J, Vunjak-Novakovic G, Freed LE (2001) Tissue engineering of functional cardiac muscle: molecular, structural and electrophysiological studies. Am J Physiol Heart Circ Physiol 280:H168–H178

    CAS  Google Scholar 

  • Parkkinen JJ, Ikonen J, Lammi MJ, Laakkonen J, Tammi M, Helminen HJ (1993) Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch Biochem Biophys 300:458–465

    Article  CAS  Google Scholar 

  • Pei M, Solchaga LA, Seidel J, Zeng L, Vunjak-Novakovic G, Caplan AI, Freed LE (2002) Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB J 16:1691–1694

    CAS  Google Scholar 

  • Petrovic M, Mitrakovic D, Bugarski B, Vonwil D, Martin I, Obradovic B (2009) A novel bioreactor with mechanical stimulation for skeletal tissue engineering. CI&CEQ 15:41–44

    Article  CAS  Google Scholar 

  • Poncelet D, Babak VG, Neufeld RJ, Goosen M, Bugarski B (1999) Theory of electrostatic dispersion of polymer solutions in the production of microgel beads containing biocatalyst. Adv Colloid Interface Sci 79:213–228

    Article  CAS  Google Scholar 

  • Radisic M, Euloth M, Yang L, Langer R, Freed LE, Vunjak-Novakovic G (2003) High density seeding of myocyte cells for tissue engineering. Biotechnol Bioeng 82:403–414

    Article  CAS  Google Scholar 

  • Radisic M, Yang L, Boublik J, Cohen RJ, Langer R, Freed LE, Vunjak-Novakovic G (2004) Medium perfusion enables engineering of compact and contractile cardiac tissue. Am J Physiol Heart Circ Physiol 286:H507–H516

    Article  CAS  Google Scholar 

  • Radisic M, Obradovic B, Vunjak-Novakovic G (2005) Functional tissue engineering of cartilage and myocardium: bioreactor aspects. In: Ma PX, Elisseeff J (eds) Scaffolding in tissue engineering. Marcel Dekker, New York, pp 491–520

    Google Scholar 

  • Radisic M, Malda J, Epping E, Geng W, Langer R, Vunjak-Novakovic G (2006a) Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol Bioeng 93:332–343

    Article  CAS  Google Scholar 

  • Radisic M, Park H, Chen F, Salazar-Lazzaro JE, Wang Y, Dennis RG, Langer R, Freed LE, Vunjak-Novakovic G (2006b) Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng 12:1–15

    Article  Google Scholar 

  • Radisic M, Cannizzaro C, Vunjak-Novakovic G (2006c) Scaffolds and fluid flow in cardiac tissue engineering. FDMP: Fluid Dynamics Mater Process 2:1–15

    Google Scholar 

  • Radisic M, Park H, Gerecht-Nir S, Cannizzaro C, Langer R, Vunjak-Novakovic G (2007) Biomimetic approach to cardiac tissue engineering. Phil Trans R Soc B 362:1357–1368

    Article  CAS  Google Scholar 

  • Radisic M, Park H, Salazar-Lazaro JE, Wang Y, Langer R, Freed LE, Vunjak-Novakovic G (2008) Pretreatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J Biomed Mater Res A 86:713–724

    Google Scholar 

  • Saamanen AM, Tammi M, Kiviranta I, Jurvelin J, Helminen HJ (1987) Maturation of proteoglycan matrix in articular cartilage under increased and decreased joint loading. A study in young rabbits. Connect Tissue Res 16:163–175

    Article  CAS  Google Scholar 

  • Sah RLY, Kim YJ, Doong JYH, Grodzinsky AJ, Plaas AHK, Sandy JD (1989) Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res 7:619–636

    Article  CAS  Google Scholar 

  • Scorsin M, Marotte F, Sabri A, Le Dref O, Demirag M, Samuel J-L, Rappaport L, Measche P (1996) Can grafted cardiomyocytes colonize peri-infarct myocardial areas? Circulation 94:II337–II340

    CAS  Google Scholar 

  • Sharma B, Elisseeff J (2004) Engineering structurally organized cartilage and bone tissues. Annals Biomed Eng 32:148–159

    Article  Google Scholar 

  • Soonpaa MH, Koh GY, Klug MG, Field LJ (1994) Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264:98–101

    Article  CAS  Google Scholar 

  • Steinmeyer J, Knue S (1997) The proteoglycan metabolism of mature bovine articular cartilage explants superimposed to continuously applied cyclic mechanical loading. Biochem Biophys Res Co 240:216–221

    Article  CAS  Google Scholar 

  • Vanwanseele B, Lucchinetti E, Stussi E (2002) The effects of immobilization on the characteristics of articular cartilage: current concepts and future directions. Osteoarthritis Cartilage 10:408–419

    Article  CAS  Google Scholar 

  • Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, Freed LE (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue engineered cartilage. J Orthop Res 17:130–138

    Article  CAS  Google Scholar 

  • Vunjak-Novakovic G, Obradovic B, Martin I, Freed LE (2002) Bioreactor studies of native and tissue engineered cartilage. Biorheology 39:259–268

    CAS  Google Scholar 

  • Wang Y, Ameer GA, Sheppard BJ, Langer R (2002) A tough biodegradable elastomer. Nat Biotechnol 20:602–606

    Article  CAS  Google Scholar 

  • Weber M, Steinert A, Jork A, Dimmler A, Thurmer F, Schutze N, Hendrich C, Zimmermann U (2002) Formation of cartilage matrix proteins by BMP-transfected murine mesenchymal stem cells encapsulated in a novel class of alginates. Biomaterials 23:2003–2013

    Article  CAS  Google Scholar 

  • Wong M, Siegrist M, Cao X (1999) Cyclic compression of articular cartilage explants is associated with progressive consolidation and altered expression pattern of extracellular matrix proteins. Matrix Biol 18:391–399

    Article  CAS  Google Scholar 

  • Zimmermann WH, Fink C, Kralish D, Remmers U, Weil J, Eschenhagen T (2000) Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 68:106–114

    Article  CAS  Google Scholar 

  • Zimmermann WH, Schneiderbanger K, Schubert P, Didie M, Munzel F, Heubach JF, Kostin S, Nehuber WL, Eschenhagen T (2002) Tissue engineering of a differentiated cardiac muscle construct. Circ Res 90:223–230

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding of their research was funded by the Ministry of Science of the Republic of Serbia, grant 142075, Swiss National Science Foundation, grant IB73B0-111016/1 (BO), NIH grants P41 EB002520-01, R01 DE016525 and R01 HL076485-01 (GV), and ARTEC and NSERC Discovery Grant (MR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojana Obradovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Obradovic, B., Radisic, M., Vunjak-Novakovic, G. (2010). Biomimetic Approaches to Design of Tissue Engineering Bioreactors. In: Shastri, V., Altankov, G., Lendlein, A. (eds) Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8790-4_7

Download citation

Publish with us

Policies and ethics