Skip to main content

Cell Based Therapies: What Do We Learn from Periosteal Osteochondrogenesis?

  • Conference paper
  • First Online:
Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles

Abstract

Unraveling isolation, cultivation and transplantation protocols is often difficult and time consuming but essential to exploit the full potential of cell based therapies. Studying periosteal callus formation, may give novel insights how this tissue can be used to repair cartilage and bone defects and thus bypass optimization of the protocols mentioned above. Periosteal callus can be induced in vivo without breaking the bone. During periosteal callus formation, osteochondrogenic progenitor cells which reside in the cambium cambium layer, differentiate via the sequential steps of endochondral bone formation; chondrogenesis is initiated then chondrocytes differentiate into hypertrophic cells. These hypertrophic chondrocytes release pro-angiogenic factors, mineralize and bone is deposited. Grafts can be harvested during the chondrogenic phase. Compared to isolated undifferentiated periosteal cells, cells in these grafts survive the transplantation into an osteochondral defect much better. By injecting a gel between bone and periosteum, the micro-environment can be manipulated. Per example inhibition of vascularization and induction of hypoxia enhances periosteal chondrogenesis both in vitro and in vivo. Taken together, studying repair processes of the body in detail may not only give essential information for different cell based therapies, but can even lead to a complete other approach in which the body its own regenerative capacity is used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson H (1962) Histochemical studies of the human hip joint. Acta Anat 48:258–292

    Article  Google Scholar 

  • Aydelotte M, Kuettner K (1992) Heterogeneity of articular chondrocytes and cartilage matrix. Marcel Dekker, New York

    Google Scholar 

  • Bartlett W, Skinner JA, Gooding CR, Carrington RW, Flanagan AM, Briggs TW et al (2005 May) Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 87(5):640–645

    Article  CAS  Google Scholar 

  • Bentley G, Greer RB 3rd (1971 Apr 9) Homotransplantation of isolated epiphyseal and articular cartilage chondrocytes into joint surfaces of rabbits. Nature 230(5293):385–388

    Article  CAS  Google Scholar 

  • Blevins FT, Steadman JR, Rodrigo JJ, Silliman J (1998) Treatment of articular cartilage defects in athletes: an analysis of functional outcome and lesion appearance. Orthopedics 21(7):761–768

    CAS  Google Scholar 

  • Bostrom MP, Lane JM, Berberian WS, Missri AA, Tomin E, Weiland A et al (1995 May) Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J Orthop Res 13(3):357–367

    Article  CAS  Google Scholar 

  • Bouwmeester SJ, Beckers JM, Kuijer R, van der Linden AJ, Bulstra SK (1997) Long-term results of rib perichondrial grafts for repair of cartilage defects in the human knee. Int Orthop 21(5):313–317

    Article  CAS  Google Scholar 

  • Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994a) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895

    Article  CAS  Google Scholar 

  • Bruder SP, Fink DJ, Caplan AI (1994 Nov) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56(3):283–294

    Article  CAS  Google Scholar 

  • Chen AC, Nagrampa JP, Schinagl RM, Lottman LM, Sah RL (1997 Nov) Chondrocyte transplantation to articular cartilage explants in vitro. J Orthop Res 15(6):791–802

    Article  CAS  Google Scholar 

  • Chen YF, Feng JA, Li P, Xing D, Ambalavanan N, Oparil S (2006 Apr 27) Atrial natriuretic peptide-dependent modulation of hypoxia-induced pulmonary vascular remodeling. Life Sci 79(14):1357–1365

    Article  CAS  Google Scholar 

  • Chu CR, Coutts RD, Yoshioka M, Harwood FL, Monosov AZ, Amiel D (1995 Sept) Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res 29(9):1147–1154

    Article  CAS  Google Scholar 

  • Chu CR, Dounchis JS, Yoshioka M, Sah RL, Coutts RD, Amiel D (1997 July) Osteochondral repair using perichondrial cells. A 1-year study in rabbits. Clin Orthop Relat Res 340:220–229

    Article  Google Scholar 

  • Dell’Accio F, Vanlauwe J, Bellemans J, Neys J, De Bari C, Luyten FP (2003 Jan) Expanded phenotypically stable chondrocytes persist in the repair tissue and contribute to cartilage matrix formation and structural integration in a goat model of autologous chondrocyte implantation. J Orthop Res 21(1):123–131

    Article  Google Scholar 

  • Duhamel H (1739) Cited by Basset CAL in current concepts of bone formation. J Bone Joint Surg Am 44-A:1217–1244

    Google Scholar 

  • Einhorn TA (2005 (Nov–Dec)) The science of fracture healing. J Orthop Trauma 19(10 Suppl):S4–S6

    Article  Google Scholar 

  • Emans PJ, Surtel DA, Frings EJ, Bulstra SK, Kuijer R (2005 (March–Apr)) In vivo generation of cartilage from periosteum. Tissue Eng 11(3–4):369–377

    Article  CAS  Google Scholar 

  • Emans PJ, Pieper J, Hulsbosch MM, Koenders M, Kreijveld E, Surtel DA et al (2006 June) Differential cell viability of chondrocytes and progenitor cells in tissue-engineered constructs following implantation into osteochondral defects. Tissue Eng 12(6):1699–1709

    Article  CAS  Google Scholar 

  • Engkvist O, Wilander E (1979) Formation of cartilage from rib perichondrium grafted to an articular cartilage defect in the femoral condyle of the rabbit. Scand J Plast Reconstr Surg 13:371–376

    Article  CAS  Google Scholar 

  • Engkvist O, Johansson SH, Ohlsen L, Skoog T (1975a) Reconstruction of articular cartilage using autologous perichondrial grafts. A preliminary report. Scand J Plast Reconstr Surg 9(3):203–206

    Article  CAS  Google Scholar 

  • Engkvist O, Ohlsen L, Johansson S, Skoog T (1975b) Reconstruction of articular cartilage using autologous perichondrial grafts. A preliminary report. Scand J Plast Reconstr Surg 9:203

    Article  CAS  Google Scholar 

  • Gallay SH, Miura Y, Commisso CN, Fitzsimmons JS, O’Driscoll SW (1994 July) Relationship of donor site to chondrogenic potential of periosteum in vitro. J Orthop Res 12(4):515–525

    Article  CAS  Google Scholar 

  • Ghilzon R, McCulloch CA, Zohar R (1999 Jan) Stromal mesenchymal progenitor cells. Leuk Lymphoma 32(3–4):211–221

    CAS  Google Scholar 

  • Grande DA, Pitman MI, Peterson L, Menche D, Klein M (1989) The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res 7(2):208–218

    Article  CAS  Google Scholar 

  • Gray DJ, Gardner E (1950 March) Prenatal development of the human knee and superior tibiofibular joints. Am J Anat 86(2):235–287

    Article  CAS  Google Scholar 

  • Hall BK, Jacobson HN (1975 Jan) The repair of fractured membrane bones in the newly hatched chick. Anat Rec 181(1):55–69

    Article  CAS  Google Scholar 

  • Hangody L, Kish G, Kárpáti Z, Szerb I, Udvarhelyi I (1997) Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. Knee Surg Sports Traumatol Arthrosc 5:262–267

    Article  CAS  Google Scholar 

  • Hangody L, Kish G, Kárpáti Z, Udvarhelyi I, Szigeti I, Bély M (1998) Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics 21(7):751–756

    CAS  Google Scholar 

  • Harper JM, Krishnan C, Darman JS, Deshpande DM, Peck S, Shats I et al (2004 May 4) Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci USA 101(18):7123–7128

    Article  CAS  Google Scholar 

  • Hauselmann HJ, Fernandes RJ, Mok SS, Schmid TM, Block JA, Aydelotte MB et al (1994 Jan) Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci 107(Pt 1):17–27

    Google Scholar 

  • Homminga GN, van der Linden AJ, Terwindt-Rouwenhorst EAW, Drukker J (1989) Repair of articular defects by perichondrial grafts. Experiments in the rabbit. Acta Orthop Scand 60(3):326–329

    Article  CAS  Google Scholar 

  • Homminga GN, Bulstra SK, Bouwmeester PSM, van der Linden AJ (1990) Perichondral grafting for cartilage lesions of the knee. J Bone Joint Surg [Br] 72-B(6):1003–1007

    Google Scholar 

  • Homminga GN, Bulstra SK, Kuijer R, van der Linden AJ (1991 Oct) Repair of sheep articular cartilage defects with a rabbit costal perichondrial graft. Acta Orthop Scand 62(5):415–418

    Article  CAS  Google Scholar 

  • Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H et al (1999 July) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14(7):1239–1249

    Article  CAS  Google Scholar 

  • Hunziker EB, Rosenberg LC (1996 May) Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 78(5):721–733

    CAS  Google Scholar 

  • Ito Y, Fitzsimmons JS, Sanyal A, Mello MA, Mukherjee N, O’Driscoll SW (2001 Apr) Localization of chondrocyte precursors in periosteum. Osteoarthritis Cartilage 9(3):215–223

    Article  CAS  Google Scholar 

  • Iwasaki M, Nakata K, Nakahara H, Nakase T, Kimura T, Kimata K et al (1993 Apr) Transforming growth factor-beta 1 stimulates chondrogenesis and inhibits osteogenesis in high density culture of periosteum-derived cells. Endocrinology 132(4):1603–1608

    Article  CAS  Google Scholar 

  • Iwasaki M, Nakahara H, Nakase T, Kimura T, Takaoka K, Caplan AI et al (1994 Aug) Bone morphogenetic protein 2 stimulates osteogenesis but does not affect chondrogenesis in osteochondrogenic differentiation of periosteum-derived cells. J Bone Miner Res 9(8):1195–1204

    Article  CAS  Google Scholar 

  • Iwasaki M, Nakahara H, Nakata K, Nakase T, Kimura T, Ono K (1995 Apr) Regulation of proliferation and osteochondrogenic differentiation of periosteum-derived cells by transforming growth factor-beta and basic fibroblast growth factor. J Bone Joint Surg Am 77(4):543–554

    CAS  Google Scholar 

  • Kartsogiannis V, Moseley J, McKelvie B, Chou ST, Hards DK, Ng KW et al (1997 Nov) Temporal expression of PTHrP during endochondral bone formation in mouse and intramembranous bone formation in an in vivo rabbit model. Bone 21(5):385–392

    Article  CAS  Google Scholar 

  • Kii I, Amizuka N, Minqi L, Kitajima S, Saga Y, Kudo A (2006 Apr 14) Periostin is an extracellular matrix protein required for eruption of incisors in mice. Biochem Biophys Res Commun 342(3):766–772

    Article  CAS  Google Scholar 

  • Kloen P, Di Paola M, Borens O, Richmond J, Perino G, Helfet DL et al (2003 Sept) BMP signaling components are expressed in human fracture callus. Bone 33(3):362–371

    Article  CAS  Google Scholar 

  • Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grontvedt T, Solheim E et al (2004 March) Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 86-A(3):455–464

    Google Scholar 

  • Koritzinsky M, Magagnin MG, van den Beucken T, Seigneuric R, Savelkouls K, Dostie J et al (2006 March 8) Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control. EMBO J 25(5):1114–1125

    Article  CAS  Google Scholar 

  • Kruyt MC, de Bruijn JD, Wilson CE, Oner FC, van Blitterswijk CA, Verbout AJ et al (2003a) Viable osteogenic cells are obligatory for tissue-engineered ectopic bone formation in goats. Tissue Eng 9(2):327–336

    Article  CAS  Google Scholar 

  • Kruyt MC, De Bruijn J, Veenhof M, Oner FC, Van Blitterswijk CA, Verbout AJ et al (2003b) Application and limitations of chloromethyl-benzamidodialkylcarbocyanine for tracing cells used in bone Tissue engineering. Tissue Eng 9(1):105–115

    Article  CAS  Google Scholar 

  • Kuettner K, Pauli B (1983) Vascularity of cartilage. Academic, New York

    Google Scholar 

  • Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK et al (2007 Sept) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024

    Article  CAS  Google Scholar 

  • Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW (2004 Feb 29) Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 36(1):1–12

    Article  Google Scholar 

  • Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B (1997 Apr) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol 17(4):2336–2346

    CAS  Google Scholar 

  • Lefebvre V, Li P, de Crombrugghe B (1998 Oct 1) A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J 17(19):5718–5733

    Article  CAS  Google Scholar 

  • Lefebvre V, Behringer RR, de Crombrugghe B (2001) L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. Osteoarthritis Cartilage 9(Suppl A):S69–S75

    Article  Google Scholar 

  • Levy NS, Chung S, Furneaux H, Levy AP (1998 March 13) Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 273(11):6417–6423

    Article  CAS  Google Scholar 

  • Li P, Oparil S, Feng W, Chen YF (2004 Oct) Hypoxia-responsive growth factors upregulate periostin and osteopontin expression via distinct signaling pathways in rat pulmonary arterial smooth muscle cells. J Appl Physiol 97(4):1550–1558; discussion 1549

    Article  CAS  Google Scholar 

  • Li G, Oparil S, Sanders JM, Zhang L, Dai M, Chen LB et al (2006 Oct) Phosphatidylinositol-3-kinase signaling mediates vascular smooth muscle cell expression of periostin in vivo and in vitro. Atherosclerosis 188(2):292–300

    Article  CAS  Google Scholar 

  • Lindahl A, Brittberg M, Peterson L (2003) Cartilage repair with chondrocytes: clinical and cellular aspects. Novartis Found Symp 249:175–186; discussion 186–179, 234–178, 239–141

    Article  Google Scholar 

  • Lisignoli G, Grassi F, Zini N, Toneguzzi S, Piacentini A, Guidolin D et al (2001 Aug) Anti-Fas-induced apoptosis in chondrocytes reduced by hyaluronan: evidence for CD44 and CD54 (intercellular adhesion molecule 1) involvement. Arthritis Rheum 44(8):1800–1807

    Article  CAS  Google Scholar 

  • Lu S, Gu X, Hoestje S, Epner DE (2002 March 19) Identification of an additional hypoxia responsive element in the glyceraldehyde-3-phosphate dehydrogenase gene promoter. Biochim Biophys Acta 1574(2):152–156

    Article  CAS  Google Scholar 

  • Malda J, Woodfield TBF, van der Vloodt F, Kooy FK, Martens DE, Tramper J et al (2004 Nov) The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs. Biomaterials 25(26):5773–5780

    Article  CAS  Google Scholar 

  • McDevitt CA, Muir H (1976 Feb) Biochemical changes in the cartilage of the knee in experimental and natural osteoarthritis in the dog. J Bone Joint Surg Br 58(1):94–101

    CAS  Google Scholar 

  • McKibbin B, Maroudas A (1979) Adult articular cartilage. Piman Med 2E:461–486

    Google Scholar 

  • Mierisch CM, Wilson HA, Turner MA, Milbrandt TA, Berthoux L, Hammarskjold ML et al (2003 Sept) Chondrocyte transplantation into articular cartilage defects with use of calcium alginate: the fate of the cells. J Bone Joint Surg Am 85-A(9):1757–1767

    Google Scholar 

  • Minchenko A, Bauer T, Salceda S, Caro J (1994 Sept) Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Invest 71(3):374–379

    CAS  Google Scholar 

  • Nakahara H, Bruder SP, Goldberg VM, Caplan AI (1990 Oct) In vivo osteochondrogenic potential of cultured cells derived from the periosteum. Clin Orthop Relat Res 259:223–232

    Google Scholar 

  • Nakahara H, Dennis JE, Bruder SP, Haynesworth SE, Lennon DP, Caplan AI (1991a) In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp Cell Res 195(2):492–503

    Article  CAS  Google Scholar 

  • Nakahara H, Goldberg VM, Caplan AI (1991b) Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res 9(4):465–476

    Article  CAS  Google Scholar 

  • Nakata K, Nakahara H, Kimura T, Kojima A, Iwasaki M, Caplan AI et al (1992 March 16) Collagen gene expression during chondrogenesis from chick periosteum-derived cells. FEBS Lett 299(3):278–282

    Article  CAS  Google Scholar 

  • Nakazawa T, Nakajima A, Seki N, Okawa A, Kato M, Moriya H et al (2004 May) Gene expression of periostin in the early stage of fracture healing detected by cDNA microarray analysis. J Orthop Res 22(3):520–525

    Article  CAS  Google Scholar 

  • Nathan S, De Das S, Thambyah A, Fen C, Goh J, Lee EH (2003 Aug) Cell-based therapy in the repair of osteochondral defects: a novel use for adipose tissue. Tissue Eng 9(4):733–744

    Article  CAS  Google Scholar 

  • Noonan KJ, Stevens JW, Tammi R, Tammi M, Hernandez JA, Midura RJ (1996 July) Spatial distribution of CD44 and hyaluronan in the proximal tibia of the growing rat. J Orthop Res 14(4):573–581

    Article  CAS  Google Scholar 

  • Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A et al (2007 May) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21(7):1345–1357

    Article  CAS  Google Scholar 

  • O’Driscoll SW, Keeley FW, Salter RB (1986 Sept) The chondrogenic potential of free autogenous peri al grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am 68(7):1017–1035

    Google Scholar 

  • O’Driscoll SW, Keeley FW, Salter RB (1988 Apr) Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year. J Bone Joint Surg Am 70(4):595–606

    Google Scholar 

  • O’Driscoll SW, Recklies AD, Poole AR (1994 Jul) Chondrogenesis in periosteal explants. An organ culture model for in vitro study. J Bone Joint Surg Am 76(7):1042–1051

    Google Scholar 

  • O’Driscoll SW, Saris DB, Ito Y, Fitzimmons JS (2001 Jan) The chondrogenic potential of periosteum decreases with age. J Orthop Res 19(1):95–103

    Article  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007 July 19) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  CAS  Google Scholar 

  • Park Y, Sugimoto M, Watrin A, Chiquet M, Hunziker EB (2005 Jun) BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthritis Cartilage 13(6):527–536

    Article  CAS  Google Scholar 

  • Pohl M, Sakurai H, Stuart RO, Nigam SK (2000 Aug 15) Role of hyaluronan and CD44 in in vitro branching morphogenesis of ureteric bud cells. Dev Biol 224(2):312–325

    Article  CAS  Google Scholar 

  • Pridie KH (1959) A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg [Br] 41-B:618–619

    Google Scholar 

  • Quintavalla J, Uziel-Fusi S, Yin J, Boehnlein E, Pastor G, Blancuzzi V et al (2002) Fluorescently labeled mesenchymal stem cells (MSCs) maintain multilineage potential and can be detected following implantation into articular cartilage defects. Biomaterials 23(1):109–119

    Article  CAS  Google Scholar 

  • Robins JC, Akeno N, Mukherjee A, Dalal RR, Aronow BJ, Koopman P et al (2005 Sept) Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone 37(3):313–322

    Article  CAS  Google Scholar 

  • Schenk R, Eggli P, Hunziker E (1986) Articular cartilage morphology. Raven, New York

    Google Scholar 

  • Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS (2001 Nov 1) Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev 15(21):2865–2876

    CAS  Google Scholar 

  • Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P et al (2001 May) Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol 21(10):3436–3444

    Article  CAS  Google Scholar 

  • Simon T, Van Sickle D, Kunishima D, Jackson D (2001) Cambium cell stimulation response to surgival release of overlying periosteal tissue. 47th Annual Meeting, ORS;Poster 0503

    Google Scholar 

  • Skoog T, Johansson SH (1976 Jan) The formation of articular cartilage from free perichondrial grafts. Plast Reconstr Surg 57(1):1–6

    Article  CAS  Google Scholar 

  • Steadman JR, Rodkey WG, Rodrigo JJ (2001 Oct) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop 391S:S362–S369

    Google Scholar 

  • Stevens MM, Qanadilo HF, Langer R, Prasad Shastri V (2004 Feb) A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials 25(5):887–894

    Article  CAS  Google Scholar 

  • Stevens MM, Marini RP, Schaefer D, Aronson J, Langer R, Shastri VP (2005 Aug 9) In vivo engineering of organs: the bone bioreactor. Proc Natl Acad Sci USA 102(32):11450–11455

    Article  CAS  Google Scholar 

  • Takahashi S, Oka M, Kotoura Y, Yamamuro T (1995 March) Autogenous callo-osseous grafts for the repair of osteochondral defects. J Bone Joint Surg Br 77(2):194–204

    CAS  Google Scholar 

  • Takeshita S, Kikuno R, Tezuka K, Amann E (1993 Aug 15) Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J 294(Pt 1):271–278

    CAS  Google Scholar 

  • Urist M (1976) Biogenesis of bone: calcium and phophorus in the skeleton and blood in vertebrate evolution. American Physiological Society, Washington, DC

    Google Scholar 

  • van der Kraan PM, van den Berg WB (2007 March) Osteophytes: relevance and biology. Osteoarthritis Cartilage 15(3):237–244

    Article  Google Scholar 

  • Vortkamp A (2001) Interaction of growth factors regulating chondrocyte differentiation in the developing embryo. Osteoarthritis Cartilage 9(Suppl A):S109–S117

    Google Scholar 

  • Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI et al (1994 Apr) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 76(4):579–592

    CAS  Google Scholar 

  • Wilde J, Yokozeki M, Terai K, Kudo A, Moriyama K (2003 Jun) The divergent expression of periostin mRNA in the periodontal ligament during experimental tooth movement. Cell Tissue Res 312(3):345–351

    Article  CAS  Google Scholar 

  • Yan W, Shao R (2006 May 15) Transduction of a mesenchyme-specific gene periostin into 293T cells induces cell invasive activity through epithelial-mesenchymal transformation. J Biol Chem 281:19700–19708

    Article  CAS  Google Scholar 

  • Yaoita H, Orimo H, Shirai Y, Shimada T (2000) Expression of bone morphogenetic proteins and rat distal-less homolog genes following rat femoral fracture. J Bone Miner Metab 18(2):63–70

    Article  CAS  Google Scholar 

  • Zarnett R, Salter RB (1989 May) Periosteal neochondrogenesis for biologically resurfacing joints: its cellular origin. Can J Surg 32(3):171–174

    CAS  Google Scholar 

  • Zohar R, Sodek J, McCulloch CA (1997 Nov 1) Characterization of stromal progenitor cells enriched by flow cytometry. Blood 90(9):3471–3481

    CAS  Google Scholar 

Download references

Acknowledgements

The authors like to acknowledge Roel Kuijer, Sjoerd Bulstra, Lodewijk van Rhijn, and Willem Voncken for their input and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Emans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Emans, P.J., Welting, T.J.M., Shastri, V.P. (2010). Cell Based Therapies: What Do We Learn from Periosteal Osteochondrogenesis?. In: Shastri, V., Altankov, G., Lendlein, A. (eds) Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8790-4_5

Download citation

Publish with us

Policies and ethics