Advertisement

Cell Based Therapies: What Do We Learn from Periosteal Osteochondrogenesis?

  • Peter J. EmansEmail author
  • Tim J. M. Welting
  • Venkatram Prasad Shastri
Conference paper
  • 904 Downloads
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

Unraveling isolation, cultivation and transplantation protocols is often difficult and time consuming but essential to exploit the full potential of cell based therapies. Studying periosteal callus formation, may give novel insights how this tissue can be used to repair cartilage and bone defects and thus bypass optimization of the protocols mentioned above. Periosteal callus can be induced in vivo without breaking the bone. During periosteal callus formation, osteochondrogenic progenitor cells which reside in the cambium cambium layer, differentiate via the sequential steps of endochondral bone formation; chondrogenesis is initiated then chondrocytes differentiate into hypertrophic cells. These hypertrophic chondrocytes release pro-angiogenic factors, mineralize and bone is deposited. Grafts can be harvested during the chondrogenic phase. Compared to isolated undifferentiated periosteal cells, cells in these grafts survive the transplantation into an osteochondral defect much better. By injecting a gel between bone and periosteum, the micro-environment can be manipulated. Per example inhibition of vascularization and induction of hypoxia enhances periosteal chondrogenesis both in vitro and in vivo. Taken together, studying repair processes of the body in detail may not only give essential information for different cell based therapies, but can even lead to a complete other approach in which the body its own regenerative capacity is used.

Keywords

Chondrogenesis Osteogenesis Osteochondral defects Periosteum 

Notes

Acknowledgements

The authors like to acknowledge Roel Kuijer, Sjoerd Bulstra, Lodewijk van Rhijn, and Willem Voncken for their input and support.

References

  1. Anderson H (1962) Histochemical studies of the human hip joint. Acta Anat 48:258–292CrossRefGoogle Scholar
  2. Aydelotte M, Kuettner K (1992) Heterogeneity of articular chondrocytes and cartilage matrix. Marcel Dekker, New YorkGoogle Scholar
  3. Bartlett W, Skinner JA, Gooding CR, Carrington RW, Flanagan AM, Briggs TW et al (2005 May) Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 87(5):640–645CrossRefGoogle Scholar
  4. Bentley G, Greer RB 3rd (1971 Apr 9) Homotransplantation of isolated epiphyseal and articular cartilage chondrocytes into joint surfaces of rabbits. Nature 230(5293):385–388CrossRefGoogle Scholar
  5. Blevins FT, Steadman JR, Rodrigo JJ, Silliman J (1998) Treatment of articular cartilage defects in athletes: an analysis of functional outcome and lesion appearance. Orthopedics 21(7):761–768Google Scholar
  6. Bostrom MP, Lane JM, Berberian WS, Missri AA, Tomin E, Weiland A et al (1995 May) Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J Orthop Res 13(3):357–367CrossRefGoogle Scholar
  7. Bouwmeester SJ, Beckers JM, Kuijer R, van der Linden AJ, Bulstra SK (1997) Long-term results of rib perichondrial grafts for repair of cartilage defects in the human knee. Int Orthop 21(5):313–317CrossRefGoogle Scholar
  8. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994a) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895CrossRefGoogle Scholar
  9. Bruder SP, Fink DJ, Caplan AI (1994 Nov) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56(3):283–294CrossRefGoogle Scholar
  10. Chen AC, Nagrampa JP, Schinagl RM, Lottman LM, Sah RL (1997 Nov) Chondrocyte transplantation to articular cartilage explants in vitro. J Orthop Res 15(6):791–802CrossRefGoogle Scholar
  11. Chen YF, Feng JA, Li P, Xing D, Ambalavanan N, Oparil S (2006 Apr 27) Atrial natriuretic peptide-dependent modulation of hypoxia-induced pulmonary vascular remodeling. Life Sci 79(14):1357–1365CrossRefGoogle Scholar
  12. Chu CR, Coutts RD, Yoshioka M, Harwood FL, Monosov AZ, Amiel D (1995 Sept) Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res 29(9):1147–1154CrossRefGoogle Scholar
  13. Chu CR, Dounchis JS, Yoshioka M, Sah RL, Coutts RD, Amiel D (1997 July) Osteochondral repair using perichondrial cells. A 1-year study in rabbits. Clin Orthop Relat Res 340:220–229CrossRefGoogle Scholar
  14. Dell’Accio F, Vanlauwe J, Bellemans J, Neys J, De Bari C, Luyten FP (2003 Jan) Expanded phenotypically stable chondrocytes persist in the repair tissue and contribute to cartilage matrix formation and structural integration in a goat model of autologous chondrocyte implantation. J Orthop Res 21(1):123–131CrossRefGoogle Scholar
  15. Duhamel H (1739) Cited by Basset CAL in current concepts of bone formation. J Bone Joint Surg Am 44-A:1217–1244Google Scholar
  16. Einhorn TA (2005 (Nov–Dec)) The science of fracture healing. J Orthop Trauma 19(10 Suppl):S4–S6CrossRefGoogle Scholar
  17. Emans PJ, Surtel DA, Frings EJ, Bulstra SK, Kuijer R (2005 (March–Apr)) In vivo generation of cartilage from periosteum. Tissue Eng 11(3–4):369–377CrossRefGoogle Scholar
  18. Emans PJ, Pieper J, Hulsbosch MM, Koenders M, Kreijveld E, Surtel DA et al (2006 June) Differential cell viability of chondrocytes and progenitor cells in tissue-engineered constructs following implantation into osteochondral defects. Tissue Eng 12(6):1699–1709CrossRefGoogle Scholar
  19. Engkvist O, Wilander E (1979) Formation of cartilage from rib perichondrium grafted to an articular cartilage defect in the femoral condyle of the rabbit. Scand J Plast Reconstr Surg 13:371–376CrossRefGoogle Scholar
  20. Engkvist O, Johansson SH, Ohlsen L, Skoog T (1975a) Reconstruction of articular cartilage using autologous perichondrial grafts. A preliminary report. Scand J Plast Reconstr Surg 9(3):203–206CrossRefGoogle Scholar
  21. Engkvist O, Ohlsen L, Johansson S, Skoog T (1975b) Reconstruction of articular cartilage using autologous perichondrial grafts. A preliminary report. Scand J Plast Reconstr Surg 9:203CrossRefGoogle Scholar
  22. Gallay SH, Miura Y, Commisso CN, Fitzsimmons JS, O’Driscoll SW (1994 July) Relationship of donor site to chondrogenic potential of periosteum in vitro. J Orthop Res 12(4):515–525CrossRefGoogle Scholar
  23. Ghilzon R, McCulloch CA, Zohar R (1999 Jan) Stromal mesenchymal progenitor cells. Leuk Lymphoma 32(3–4):211–221Google Scholar
  24. Grande DA, Pitman MI, Peterson L, Menche D, Klein M (1989) The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res 7(2):208–218CrossRefGoogle Scholar
  25. Gray DJ, Gardner E (1950 March) Prenatal development of the human knee and superior tibiofibular joints. Am J Anat 86(2):235–287CrossRefGoogle Scholar
  26. Hall BK, Jacobson HN (1975 Jan) The repair of fractured membrane bones in the newly hatched chick. Anat Rec 181(1):55–69CrossRefGoogle Scholar
  27. Hangody L, Kish G, Kárpáti Z, Szerb I, Udvarhelyi I (1997) Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. Knee Surg Sports Traumatol Arthrosc 5:262–267CrossRefGoogle Scholar
  28. Hangody L, Kish G, Kárpáti Z, Udvarhelyi I, Szigeti I, Bély M (1998) Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics 21(7):751–756Google Scholar
  29. Harper JM, Krishnan C, Darman JS, Deshpande DM, Peck S, Shats I et al (2004 May 4) Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci USA 101(18):7123–7128CrossRefGoogle Scholar
  30. Hauselmann HJ, Fernandes RJ, Mok SS, Schmid TM, Block JA, Aydelotte MB et al (1994 Jan) Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci 107(Pt 1):17–27Google Scholar
  31. Homminga GN, van der Linden AJ, Terwindt-Rouwenhorst EAW, Drukker J (1989) Repair of articular defects by perichondrial grafts. Experiments in the rabbit. Acta Orthop Scand 60(3):326–329CrossRefGoogle Scholar
  32. Homminga GN, Bulstra SK, Bouwmeester PSM, van der Linden AJ (1990) Perichondral grafting for cartilage lesions of the knee. J Bone Joint Surg [Br] 72-B(6):1003–1007Google Scholar
  33. Homminga GN, Bulstra SK, Kuijer R, van der Linden AJ (1991 Oct) Repair of sheep articular cartilage defects with a rabbit costal perichondrial graft. Acta Orthop Scand 62(5):415–418CrossRefGoogle Scholar
  34. Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H et al (1999 July) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14(7):1239–1249CrossRefGoogle Scholar
  35. Hunziker EB, Rosenberg LC (1996 May) Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 78(5):721–733Google Scholar
  36. Ito Y, Fitzsimmons JS, Sanyal A, Mello MA, Mukherjee N, O’Driscoll SW (2001 Apr) Localization of chondrocyte precursors in periosteum. Osteoarthritis Cartilage 9(3):215–223CrossRefGoogle Scholar
  37. Iwasaki M, Nakata K, Nakahara H, Nakase T, Kimura T, Kimata K et al (1993 Apr) Transforming growth factor-beta 1 stimulates chondrogenesis and inhibits osteogenesis in high density culture of periosteum-derived cells. Endocrinology 132(4):1603–1608CrossRefGoogle Scholar
  38. Iwasaki M, Nakahara H, Nakase T, Kimura T, Takaoka K, Caplan AI et al (1994 Aug) Bone morphogenetic protein 2 stimulates osteogenesis but does not affect chondrogenesis in osteochondrogenic differentiation of periosteum-derived cells. J Bone Miner Res 9(8):1195–1204CrossRefGoogle Scholar
  39. Iwasaki M, Nakahara H, Nakata K, Nakase T, Kimura T, Ono K (1995 Apr) Regulation of proliferation and osteochondrogenic differentiation of periosteum-derived cells by transforming growth factor-beta and basic fibroblast growth factor. J Bone Joint Surg Am 77(4):543–554Google Scholar
  40. Kartsogiannis V, Moseley J, McKelvie B, Chou ST, Hards DK, Ng KW et al (1997 Nov) Temporal expression of PTHrP during endochondral bone formation in mouse and intramembranous bone formation in an in vivo rabbit model. Bone 21(5):385–392CrossRefGoogle Scholar
  41. Kii I, Amizuka N, Minqi L, Kitajima S, Saga Y, Kudo A (2006 Apr 14) Periostin is an extracellular matrix protein required for eruption of incisors in mice. Biochem Biophys Res Commun 342(3):766–772CrossRefGoogle Scholar
  42. Kloen P, Di Paola M, Borens O, Richmond J, Perino G, Helfet DL et al (2003 Sept) BMP signaling components are expressed in human fracture callus. Bone 33(3):362–371CrossRefGoogle Scholar
  43. Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grontvedt T, Solheim E et al (2004 March) Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 86-A(3):455–464Google Scholar
  44. Koritzinsky M, Magagnin MG, van den Beucken T, Seigneuric R, Savelkouls K, Dostie J et al (2006 March 8) Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control. EMBO J 25(5):1114–1125CrossRefGoogle Scholar
  45. Kruyt MC, de Bruijn JD, Wilson CE, Oner FC, van Blitterswijk CA, Verbout AJ et al (2003a) Viable osteogenic cells are obligatory for tissue-engineered ectopic bone formation in goats. Tissue Eng 9(2):327–336CrossRefGoogle Scholar
  46. Kruyt MC, De Bruijn J, Veenhof M, Oner FC, Van Blitterswijk CA, Verbout AJ et al (2003b) Application and limitations of chloromethyl-benzamidodialkylcarbocyanine for tracing cells used in bone Tissue engineering. Tissue Eng 9(1):105–115CrossRefGoogle Scholar
  47. Kuettner K, Pauli B (1983) Vascularity of cartilage. Academic, New YorkGoogle Scholar
  48. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK et al (2007 Sept) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024CrossRefGoogle Scholar
  49. Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW (2004 Feb 29) Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 36(1):1–12CrossRefGoogle Scholar
  50. Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B (1997 Apr) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol 17(4):2336–2346Google Scholar
  51. Lefebvre V, Li P, de Crombrugghe B (1998 Oct 1) A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J 17(19):5718–5733CrossRefGoogle Scholar
  52. Lefebvre V, Behringer RR, de Crombrugghe B (2001) L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. Osteoarthritis Cartilage 9(Suppl A):S69–S75CrossRefGoogle Scholar
  53. Levy NS, Chung S, Furneaux H, Levy AP (1998 March 13) Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 273(11):6417–6423CrossRefGoogle Scholar
  54. Li P, Oparil S, Feng W, Chen YF (2004 Oct) Hypoxia-responsive growth factors upregulate periostin and osteopontin expression via distinct signaling pathways in rat pulmonary arterial smooth muscle cells. J Appl Physiol 97(4):1550–1558; discussion 1549CrossRefGoogle Scholar
  55. Li G, Oparil S, Sanders JM, Zhang L, Dai M, Chen LB et al (2006 Oct) Phosphatidylinositol-3-kinase signaling mediates vascular smooth muscle cell expression of periostin in vivo and in vitro. Atherosclerosis 188(2):292–300CrossRefGoogle Scholar
  56. Lindahl A, Brittberg M, Peterson L (2003) Cartilage repair with chondrocytes: clinical and cellular aspects. Novartis Found Symp 249:175–186; discussion 186–179, 234–178, 239–141CrossRefGoogle Scholar
  57. Lisignoli G, Grassi F, Zini N, Toneguzzi S, Piacentini A, Guidolin D et al (2001 Aug) Anti-Fas-induced apoptosis in chondrocytes reduced by hyaluronan: evidence for CD44 and CD54 (intercellular adhesion molecule 1) involvement. Arthritis Rheum 44(8):1800–1807CrossRefGoogle Scholar
  58. Lu S, Gu X, Hoestje S, Epner DE (2002 March 19) Identification of an additional hypoxia responsive element in the glyceraldehyde-3-phosphate dehydrogenase gene promoter. Biochim Biophys Acta 1574(2):152–156CrossRefGoogle Scholar
  59. Malda J, Woodfield TBF, van der Vloodt F, Kooy FK, Martens DE, Tramper J et al (2004 Nov) The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs. Biomaterials 25(26):5773–5780CrossRefGoogle Scholar
  60. McDevitt CA, Muir H (1976 Feb) Biochemical changes in the cartilage of the knee in experimental and natural osteoarthritis in the dog. J Bone Joint Surg Br 58(1):94–101Google Scholar
  61. McKibbin B, Maroudas A (1979) Adult articular cartilage. Piman Med 2E:461–486Google Scholar
  62. Mierisch CM, Wilson HA, Turner MA, Milbrandt TA, Berthoux L, Hammarskjold ML et al (2003 Sept) Chondrocyte transplantation into articular cartilage defects with use of calcium alginate: the fate of the cells. J Bone Joint Surg Am 85-A(9):1757–1767Google Scholar
  63. Minchenko A, Bauer T, Salceda S, Caro J (1994 Sept) Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Invest 71(3):374–379Google Scholar
  64. Nakahara H, Bruder SP, Goldberg VM, Caplan AI (1990 Oct) In vivo osteochondrogenic potential of cultured cells derived from the periosteum. Clin Orthop Relat Res 259:223–232Google Scholar
  65. Nakahara H, Dennis JE, Bruder SP, Haynesworth SE, Lennon DP, Caplan AI (1991a) In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp Cell Res 195(2):492–503CrossRefGoogle Scholar
  66. Nakahara H, Goldberg VM, Caplan AI (1991b) Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res 9(4):465–476CrossRefGoogle Scholar
  67. Nakata K, Nakahara H, Kimura T, Kojima A, Iwasaki M, Caplan AI et al (1992 March 16) Collagen gene expression during chondrogenesis from chick periosteum-derived cells. FEBS Lett 299(3):278–282CrossRefGoogle Scholar
  68. Nakazawa T, Nakajima A, Seki N, Okawa A, Kato M, Moriya H et al (2004 May) Gene expression of periostin in the early stage of fracture healing detected by cDNA microarray analysis. J Orthop Res 22(3):520–525CrossRefGoogle Scholar
  69. Nathan S, De Das S, Thambyah A, Fen C, Goh J, Lee EH (2003 Aug) Cell-based therapy in the repair of osteochondral defects: a novel use for adipose tissue. Tissue Eng 9(4):733–744CrossRefGoogle Scholar
  70. Noonan KJ, Stevens JW, Tammi R, Tammi M, Hernandez JA, Midura RJ (1996 July) Spatial distribution of CD44 and hyaluronan in the proximal tibia of the growing rat. J Orthop Res 14(4):573–581CrossRefGoogle Scholar
  71. Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A et al (2007 May) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21(7):1345–1357CrossRefGoogle Scholar
  72. O’Driscoll SW, Keeley FW, Salter RB (1986 Sept) The chondrogenic potential of free autogenous peri al grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am 68(7):1017–1035Google Scholar
  73. O’Driscoll SW, Keeley FW, Salter RB (1988 Apr) Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year. J Bone Joint Surg Am 70(4):595–606Google Scholar
  74. O’Driscoll SW, Recklies AD, Poole AR (1994 Jul) Chondrogenesis in periosteal explants. An organ culture model for in vitro study. J Bone Joint Surg Am 76(7):1042–1051Google Scholar
  75. O’Driscoll SW, Saris DB, Ito Y, Fitzimmons JS (2001 Jan) The chondrogenic potential of periosteum decreases with age. J Orthop Res 19(1):95–103CrossRefGoogle Scholar
  76. Okita K, Ichisaka T, Yamanaka S (2007 July 19) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317CrossRefGoogle Scholar
  77. Park Y, Sugimoto M, Watrin A, Chiquet M, Hunziker EB (2005 Jun) BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthritis Cartilage 13(6):527–536CrossRefGoogle Scholar
  78. Pohl M, Sakurai H, Stuart RO, Nigam SK (2000 Aug 15) Role of hyaluronan and CD44 in in vitro branching morphogenesis of ureteric bud cells. Dev Biol 224(2):312–325CrossRefGoogle Scholar
  79. Pridie KH (1959) A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg [Br] 41-B:618–619Google Scholar
  80. Quintavalla J, Uziel-Fusi S, Yin J, Boehnlein E, Pastor G, Blancuzzi V et al (2002) Fluorescently labeled mesenchymal stem cells (MSCs) maintain multilineage potential and can be detected following implantation into articular cartilage defects. Biomaterials 23(1):109–119CrossRefGoogle Scholar
  81. Robins JC, Akeno N, Mukherjee A, Dalal RR, Aronow BJ, Koopman P et al (2005 Sept) Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone 37(3):313–322CrossRefGoogle Scholar
  82. Schenk R, Eggli P, Hunziker E (1986) Articular cartilage morphology. Raven, New YorkGoogle Scholar
  83. Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS (2001 Nov 1) Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev 15(21):2865–2876Google Scholar
  84. Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P et al (2001 May) Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol 21(10):3436–3444CrossRefGoogle Scholar
  85. Simon T, Van Sickle D, Kunishima D, Jackson D (2001) Cambium cell stimulation response to surgival release of overlying periosteal tissue. 47th Annual Meeting, ORS;Poster 0503Google Scholar
  86. Skoog T, Johansson SH (1976 Jan) The formation of articular cartilage from free perichondrial grafts. Plast Reconstr Surg 57(1):1–6CrossRefGoogle Scholar
  87. Steadman JR, Rodkey WG, Rodrigo JJ (2001 Oct) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop 391S:S362–S369Google Scholar
  88. Stevens MM, Qanadilo HF, Langer R, Prasad Shastri V (2004 Feb) A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials 25(5):887–894CrossRefGoogle Scholar
  89. Stevens MM, Marini RP, Schaefer D, Aronson J, Langer R, Shastri VP (2005 Aug 9) In vivo engineering of organs: the bone bioreactor. Proc Natl Acad Sci USA 102(32):11450–11455CrossRefGoogle Scholar
  90. Takahashi S, Oka M, Kotoura Y, Yamamuro T (1995 March) Autogenous callo-osseous grafts for the repair of osteochondral defects. J Bone Joint Surg Br 77(2):194–204Google Scholar
  91. Takeshita S, Kikuno R, Tezuka K, Amann E (1993 Aug 15) Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J 294(Pt 1):271–278Google Scholar
  92. Urist M (1976) Biogenesis of bone: calcium and phophorus in the skeleton and blood in vertebrate evolution. American Physiological Society, Washington, DCGoogle Scholar
  93. van der Kraan PM, van den Berg WB (2007 March) Osteophytes: relevance and biology. Osteoarthritis Cartilage 15(3):237–244CrossRefGoogle Scholar
  94. Vortkamp A (2001) Interaction of growth factors regulating chondrocyte differentiation in the developing embryo. Osteoarthritis Cartilage 9(Suppl A):S109–S117Google Scholar
  95. Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI et al (1994 Apr) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 76(4):579–592Google Scholar
  96. Wilde J, Yokozeki M, Terai K, Kudo A, Moriyama K (2003 Jun) The divergent expression of periostin mRNA in the periodontal ligament during experimental tooth movement. Cell Tissue Res 312(3):345–351CrossRefGoogle Scholar
  97. Yan W, Shao R (2006 May 15) Transduction of a mesenchyme-specific gene periostin into 293T cells induces cell invasive activity through epithelial-mesenchymal transformation. J Biol Chem 281:19700–19708CrossRefGoogle Scholar
  98. Yaoita H, Orimo H, Shirai Y, Shimada T (2000) Expression of bone morphogenetic proteins and rat distal-less homolog genes following rat femoral fracture. J Bone Miner Metab 18(2):63–70CrossRefGoogle Scholar
  99. Zarnett R, Salter RB (1989 May) Periosteal neochondrogenesis for biologically resurfacing joints: its cellular origin. Can J Surg 32(3):171–174Google Scholar
  100. Zohar R, Sodek J, McCulloch CA (1997 Nov 1) Characterization of stromal progenitor cells enriched by flow cytometry. Blood 90(9):3471–3481Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Peter J. Emans
    • 1
    Email author
  • Tim J. M. Welting
    • 1
  • Venkatram Prasad Shastri
    • 2
  1. 1.Department Orthopaedic SurgeryUniversity Hospital MaastrichtMaastrichtThe Netherlands
  2. 2.Faculty of Chemistry, Pharmacy and Earth Sciences, Institute for Macromolecular Chemistry and Bioss-Center for Cell Signalling StudiesUniversity of FreiburgFreiburgGermany

Personalised recommendations