Skip to main content

Dermal Precursors and the Origins of the Wound Fibroblast

  • Conference paper
  • First Online:
Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles

Abstract

Tissue repair demands the efficient restoration of connective tissue integrity and architecture. The brunt of the task falls on the fibroblast, a cell type strongly committed to the production of extracellular matrix. Recent investigation has refined the historical concept that the bone marrow and circulating precursors can make a significant, transient contribution to wound healing during the formation of granulation tissue. In parallel, there is mounting evidence that a subset of dermal mesenchymal cells have pluripotent properties that could contribute to the restoration and even regeneration of wound sites. The interrelationships between mesenchymal stem cells, circulating fibrocytes, and dermal progenitors are still an evolving area of investigation. Nevertheless, the manipulation of these cell types for wound healing and tissue engineering applications is a promising strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe R et al (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166(12):7556–7562

    CAS  Google Scholar 

  • Abraham DJ et al (2007) New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma. Curr Rheumatol Rep 9(2):136–143

    Article  CAS  Google Scholar 

  • Ahmed N, Stanford WL, Kandel RA (2007) Mesenchymal stem and progenitor cells for cartilage repair. Skeletal Radiol 36(10):909–912

    Article  Google Scholar 

  • Alfaro MP et al (2009) The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. Proc Natl Acad Sci USA 105:18366–18371

    Article  Google Scholar 

  • Allgower M, Hulliger L (1960) Origin of fibroblasts from mononucelar blood cells: a study on the in vitro formation of the collagen precursor, hydroxyproline, in buffy coat cultures. Surgery 47:603–609

    CAS  Google Scholar 

  • Asahara T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  CAS  Google Scholar 

  • Asahara T et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228

    Article  CAS  Google Scholar 

  • Badiavas EV et al (2003) Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 196(2):245–250

    Article  CAS  Google Scholar 

  • Bartsch G et al (2005) Propagation, expansion, and multilineage differentiation of human somatic stem cells from dermal progenitors. Stem Cells Dev 14(3):337–348

    Article  CAS  Google Scholar 

  • Bedelbaeva K et al (2010) Lack of p21 expression links cell cycle control and appendage regeneration in mice. Proc Nat Acad Sci USA 107:5845–5850

    Article  CAS  Google Scholar 

  • Bellini A, Mattoli S (2007) The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 87(9):858–870

    Article  CAS  Google Scholar 

  • Bucala R (2008) Circulating fibrocytes: cellular basis for NSF. J Am Coll Radiol 5(1):36–39

    Article  Google Scholar 

  • Bucala R et al (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1(1):71–81

    CAS  Google Scholar 

  • Caldwell RL et al (2008) Tissue profiling MALDI mass spectrometry reveals prominent calcium-binding proteins in the proteome of regenerative MRL mouse wounds. Wound Repair Regen 16:442–449

    Article  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641–650

    Article  CAS  Google Scholar 

  • Caplan AI (1994) The mesengenic process. Clin Plast Surg 21(3):429–435

    CAS  Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2):341–347

    Article  CAS  Google Scholar 

  • Ceradini DJ, Gurtner GC (2005) Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc Med 15(2):57–63

    Article  CAS  Google Scholar 

  • Cha J, Falanga V (2007) Stem cells in cutaneous wound healing. Clin Dermatol 25(1):73–78

    Article  Google Scholar 

  • Chen FG et al (2007) Clonal analysis of nestin vimentin + multipotent fibroblasts isolated from human dermis. J Cell Sci 120(Pt 16):2875–2883

    Article  CAS  Google Scholar 

  • Chesney J et al (1997) The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naive T cells in situ. Proc Natl Acad Sci USA 94(12):6307–6312

    Article  CAS  Google Scholar 

  • Chunmeng S, Tianmin C (2004) Skin: a promising reservoir for adult stem cell populations. Med Hypotheses 62(5):683–688

    Article  Google Scholar 

  • Cohnheim J (1867) Ueber Entzundung und Eiterung. Path Anat Physiol Klin Med 40:1–79

    Google Scholar 

  • Cotsarelis G (2006) Epithelial stem cells: a folliculocentric view. J Invest Dermatol 126(7):1459–1468

    Article  CAS  Google Scholar 

  • Crigler L et al (2007) Isolation of a mesenchymal cell population from murine dermis that contains progenitors of multiple cell lineages. FASEB J 21(9):2050–2063

    Article  CAS  Google Scholar 

  • Davis TA, Lennon G (2005) Mice with a regenerative wound healing capacity and an SLE autoimmune phenotype contain elevated numbers of circulating and marrow-derived macrophage progenitor cells. Blood Cells Mol Dis 34(1):17–25

    Article  CAS  Google Scholar 

  • De Bari C, Dell’accio F (2007) Mesenchymal stem cells in rheumatology: a regenerative approach to joint repair. Clin Sci (Lond) 113(8):339–348

    Article  Google Scholar 

  • Delo DM et al (2006) Amniotic fluid and placental stem cells. Methods Enzymol 419:426–438

    Article  CAS  Google Scholar 

  • Dennis JE et al (2002) The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs 170(2–3):73–82

    Article  Google Scholar 

  • Dicker A et al (2005) Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res 308(2):283–290

    Article  CAS  Google Scholar 

  • Eguchi M, Masuda H, Asahara T (2007) Endothelial progenitor cells for postnatal vasculogenesis. Clin Exp Nephrol 11(1):18–25

    Article  Google Scholar 

  • Falanga V (2004) The chronic wound: impaired healing and solutions in the context of wound bed preparation. Blood Cells Mol Dis 32(1):88–94

    Article  CAS  Google Scholar 

  • Falanga V et al (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13(6):1299–1312

    Article  CAS  Google Scholar 

  • Fathke C et al (2004) Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells 22(5):812–822

    Article  Google Scholar 

  • Fernandes KJ et al (2004) A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 6(11):1082–1093

    Article  CAS  Google Scholar 

  • Fernandes KJ et al (2006) Analysis of the neurogenic potential of multipotent skin-derived precursors. Exp Neurol 201(1):32–48

    Article  Google Scholar 

  • Fernandes KJ, Toma JG, Miller FD (2008) Multipotent skin-derived precursors: adult neural crest-related precursors with therapeutic potential. Philos Trans R Soc Lond B Biol Sci 363:185–198

    Article  CAS  Google Scholar 

  • Friedenstein AJ (1995) Marrow stromal fibroblasts. Calcif Tissue Int 56(Suppl 1):S17

    CAS  Google Scholar 

  • Friedenstein A, Kuralesova AI (1971) Osteogenic precursor cells of bone marrow in radiation chimeras. Transplantation 12(2):99–108

    Article  CAS  Google Scholar 

  • Friedenstein AJ et al (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2(2):83–92

    CAS  Google Scholar 

  • Gharzi A, Reynolds AJ, Jahoda CA (2003) Plasticity of hair follicle dermal cells in wound healing and induction. Exp Dermatol 12(2):126–136

    Article  CAS  Google Scholar 

  • Gronthos S et al (1994) The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood 84(12):4164–4173

    CAS  Google Scholar 

  • Gurtner GC, Callaghan MJ, Longaker MT (2007) Progress and potential for regenerative medicine. Annu Rev Med 58:299–312

    Article  CAS  Google Scholar 

  • Heber-Katz E et al (2004) Spallanzani’s mouse: a model of restoration and regeneration. Curr Top Microbiol Immunol 280:165–189

    Article  CAS  Google Scholar 

  • Hennessy B, Korbling M, Estrov Z (2004) Circulating stem cells and tissue repair. Panminerva Med 46(1):1–11

    CAS  Google Scholar 

  • Hoogduijn MJ, Gorjup E, Genever PG (2006) Comparative characterization of hair follicle dermal stem cells and bone marrow mesenchymal stem cells. Stem Cells Dev 15(1):49–60

    Article  CAS  Google Scholar 

  • Hunt DP et al (2008) A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin. Stem Cells 26(1):163–172

    Article  CAS  Google Scholar 

  • Ishii G et al (2005) In vivo characterization of bone marrow-derived fibroblasts recruited into fibrotic lesions. Stem Cells 23(5):699–706

    Article  CAS  Google Scholar 

  • Iwano M et al (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110(3):341–350

    CAS  Google Scholar 

  • Jahoda CA et al (2003) Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp Dermatol 12(6):849–859

    Article  Google Scholar 

  • Kim WS et al (2007) Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 48(1):15–24

    Article  CAS  Google Scholar 

  • Lako M et al (2002) Hair follicle dermal cells repopulate the mouse haematopoietic system. J Cell Sci 115(Pt 20):3967–3974

    Article  CAS  Google Scholar 

  • Lama VN, Phan SH (2006) The extrapulmonary origin of fibroblasts: stem/progenitor cells and beyond. Proc Am Thorac Soc 3(4):373–376

    Article  CAS  Google Scholar 

  • Le Blanc K, Pittenger M (2005) Mesenchymal stem cells: progress toward promise. Cytotherapy 7(1):36–45

    Google Scholar 

  • Li X et al (2001) Genetic control of the rate of wound healing in mice. Heredity 86(Pt 6):668–674

    Article  CAS  Google Scholar 

  • Li WW et al. (2005) The role of therapeutic angiogenesis in tissue repair and regeneration. Adv Skin Wound Care 18(9):491–500; quiz 501–502

    Article  Google Scholar 

  • Lindblad WJ (1998) Perspective article: collagen expression by novel cell populations in the dermal wound environment. Wound Repair Regen 6(3):186–193

    Article  CAS  Google Scholar 

  • Lindblad WJ et al (1987) Induction of prolyl hydroxylase activity in a nonadherent population of human leukocytes. Biochem Biophys Res Commun 147(1):486–493

    Article  CAS  Google Scholar 

  • Lowry WE et al (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA 105(8):2883–2888

    Article  CAS  Google Scholar 

  • Maherali N et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1(1):55–70

    Article  CAS  Google Scholar 

  • McClain SA et al (1996) Mesenchymal cell activation is the rate-limiting step of granulation tissue induction. Am J Pathol 149(4):1257–1270

    CAS  Google Scholar 

  • Okada H, Kalluri R (2005) Cellular and molecular pathways that lead to progression and regression of renal fibrogenesis. Curr Mol Med 5(5):467–474

    Article  CAS  Google Scholar 

  • Okada H et al (1997) Early role of Fsp1 in epithelial-mesenchymal transformation. Am J Physiol 273(4 Pt 2):F563–F574

    CAS  Google Scholar 

  • Opalenik SR, Davidson JM (2005) Fibroblast differentiation of bone marrow-derived cells during wound repair. FASEB J 19(11):1561–1563

    CAS  Google Scholar 

  • Paget J (1863) Lectures on surgical pathology. Longmans, London, p 848

    Google Scholar 

  • Peng H, Huard J (2004) Muscle-derived stem cells for musculoskeletal tissue regeneration and repair. Transpl Immunol 12(3–4):311–319

    Article  CAS  Google Scholar 

  • Pereira RF et al (1998) Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA 95(3):1142–1147

    Article  CAS  Google Scholar 

  • Pilling D et al (2003) Inhibition of fibrocyte differentiation by serum amyloid P. J Immunol 171(10):5537–5546

    CAS  Google Scholar 

  • Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  Google Scholar 

  • Ponte AL et al (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25(7):1737–1745

    Article  CAS  Google Scholar 

  • Prichard HL, Reichert WM, Klitzman B (2007) Adult adipose-derived stem cell attachment to biomaterials. Biomaterials 28(6):936–946

    Article  CAS  Google Scholar 

  • Quan TE et al (2004) Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 36(4):598–606

    Article  CAS  Google Scholar 

  • Quan TE, Cowper SE, Bucala R (2006) The role of circulating fibrocytes in fibrosis. Curr Rheumatol Rep 8(2):145–150

    Article  CAS  Google Scholar 

  • Richardson GD et al (2005) Plasticity of rodent and human hair follicle dermal cells: implications for cell therapy and tissue engineering. J Investig Dermatol Symp Proc 10(3):180–183

    Article  Google Scholar 

  • Richter W (2007) Cell-based cartilage repair: illusion or solution for osteoarthritis. Curr Opin Rheumatol 19(5):451–456

    CAS  Google Scholar 

  • Roh C, Lyle S (2006) Cutaneous stem cells and wound healing. Pediatr Res 59(4 Pt 2):100R–103R

    Article  Google Scholar 

  • Sieber-Blum M et al (2004) Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn 231(2):258–269

    Article  CAS  Google Scholar 

  • Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78(1):55–62

    CAS  Google Scholar 

  • Stewart K et al (2003) STRO-1, HOP-26 (CD63), CD49a and SB-10 (CD166) as markers of primitive human marrow stromal cells and their more differentiated progeny: a comparative investigation in vitro. Cell Tissue Res 313(3):281–290

    Article  CAS  Google Scholar 

  • Stirling G, Kakkar V (1969) Cells in the circulating blood capable of producing connective tissue. Br J Exp Pathol 50:51–55

    CAS  Google Scholar 

  • Toma JG et al (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3(9):778–784

    Article  CAS  Google Scholar 

  • Toma JG et al (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23(6):727–737

    Article  CAS  Google Scholar 

  • Wang JF et al (2007) Fibrocytes from burn patients regulate the activities of fibroblasts. Wound Repair Regen 15(1):113–121

    Article  Google Scholar 

  • Yamanaka S (2008) Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif 41(Suppl 1):51–56

    Google Scholar 

  • Yang L et al (2002) Peripheral blood fibrocytes from burn patients: identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells. Lab Invest 82(9):1183–1192

    CAS  Google Scholar 

  • Young HE et al (1993) Pluripotent mesenchymal stem cells reside within avian connective tissue matrices. In Vitro Cell Dev Biol Anim 29A(9):723–736

    Article  CAS  Google Scholar 

  • Young HE et al (1995) Mesenchymal stem cells reside within the connective tissues of many organs. Dev Dyn 202(2):137–144

    Article  CAS  Google Scholar 

  • Young HE et al (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 264(1):51–62

    Article  CAS  Google Scholar 

  • Yu H et al (2007) Mouse chromosome 9 quantitative trait loci for soft tissue regeneration: congenic analysis and fine mapping. Wound Repair Regen 15(6):922–927

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to Pampee P. Young, Susan R. Opalenik, and Mariagabriella Giro for their contributions to this work. Supported by the Department of Veterans Affairs and NIH grants AG06528 and AR041943.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Davidson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Davidson, J.M. (2010). Dermal Precursors and the Origins of the Wound Fibroblast. In: Shastri, V., Altankov, G., Lendlein, A. (eds) Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8790-4_4

Download citation

Publish with us

Policies and ethics