Endothelial Progenitor Cells for Tissue Engineering and Tissue Regeneration

Endothelial Progenitor Cells
  • Joyce BischoffEmail author
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


Vascularization of tissues is a major challenge of tissue-engineering and tissue regeneration. We hypothesize that blood-derived endothelial progenitor cells (EPCs) have the required proliferative and vasculogenic activity to create vascular networks in vivo. To test this, EPCs from human umbilical cord blood or from adult peripheral blood, and human smooth muscle cells as a source of perivascular cells, were combined in Matrigel and implanted subcutaneously into immunodeficient mice. An extensive network of human endothelial cell-lined vessels filled with red blood cells was seen after 1 week, indicating formation of functional anastomoses with the host vasculature. Quantitative analyses showed the microvessel density was significantly superior to that generated by human dermal microvascular endothelial cells but similar to that generated by human umbilical vein endothelial cells. Our findings strongly support the use of human EPCs to form vascular networks in engineered organs and tissues and for regeneration of vascular networks in vivo. In this Chapter, previous studies on strategies for creating microvascular networks, sources of endothelial cells and EPCs for cardiovascular tissue-engineering and studies using bone marrow-derived progenitors for tissue regeneration will be discussed.


Endothelial progenitor cells (EPCs) Vasculogenesis Angiogenesis Microvascular networks Human endothelial cells 


  1. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967CrossRefGoogle Scholar
  2. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228CrossRefGoogle Scholar
  3. Assmus B, Fischer-Rasokat U, Honold J, Seeger FH, Fichtlscherer S, Tonn T, Seifried E, Schachinger V, Dimmeler S, Zeiher AM (2007) Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD Registry. Circ Res 100:1234–1241CrossRefGoogle Scholar
  4. Ballard VL, Edelberg JM (2007) Stem cells and the regeneration of the aging cardiovascular system. Circ Res 100:1116–1127CrossRefGoogle Scholar
  5. Cebotari S, Lichtenberg A, Tudorache I, Hilfiker A, Mertsching H, Leyh R, Breymann T, Kallenbach K, Maniuc L, Batrinac A et al (2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114:I132–I137CrossRefGoogle Scholar
  6. Chrobak KM, Potter DR, Tien J (2006) Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 71:185–196CrossRefGoogle Scholar
  7. Drixler TA, Vogten MJ, Ritchie ED, van Vroonhoven TJ, Gebbink MF, Voest EE, Borel Rinkes IH (2002) Liver regeneration is an angiogenesis-associated phenomenon. Ann Surg 236:703–711; discussion 711–702CrossRefGoogle Scholar
  8. Enis DR, Shepherd BR, Wang Y, Qasim A, Shanahan CM, Weissberg PL, Kashgarian M, Pober JS, Schechner JS (2005) Induction, differentiation, and remodeling of blood vessels after transplantation of Bcl-2-transduced endothelial cells. Proc Natl Acad Sci USA 102:425–430CrossRefGoogle Scholar
  9. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286CrossRefGoogle Scholar
  10. Gerecht-Nir S, Ziskind A, Cohen S, Itskovitz-Eldor J (2003) Human embryonic stem cells as an in vitro model for human vascular development and the induction of vascular differentiation. Lab Invest 83:1811–1820CrossRefGoogle Scholar
  11. Golden AP, Tien J (2007) Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7:720–725CrossRefGoogle Scholar
  12. Itescu S, Kocher AA, Schuster MD (2003) Myocardial neovascularization by adult bone marrow-derived angioblasts: strategies for improvement of cardiomyocyte function. Heart Fail Rev 8:253–258CrossRefGoogle Scholar
  13. Kaigler D, Krebsbach PH, West ER, Horger K, Huang YC, Mooney DJ (2005) Endothelial cell modulation of bone marrow stromal cell osteogenic potential. FASEB J 19:665–667Google Scholar
  14. Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW, Rabkin E, Moran AM, Schoen FJ, Atala A et al (2001) Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 7:1035–1040CrossRefGoogle Scholar
  15. Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 103:2480–2487CrossRefGoogle Scholar
  16. Kobayashi A, Miyake H, Hattori H, Kuwana R, Hiruma Y, Nakahama K, Ichinose S, Ota M, Nakamura M, Takeda S et al (2007) In vitro formation of capillary networks using optical lithographic techniques. Biochem Biophys Res Commun 358:692–697CrossRefGoogle Scholar
  17. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436CrossRefGoogle Scholar
  18. Lammert E, Cleaver O, Melton D (2001) Induction of pancreatic differentiation by signals from blood vessels. Science 294:564–567CrossRefGoogle Scholar
  19. Lee H, Cusick RA, Browne F, Ho Kim T, Ma PX, Utsunomiya H, Langer R, Vacanti JP (2002) Local delivery of basic fibroblast growth factor increases both angiogenesis and engraftment of hepatocytes in tissue-engineered polymer devices. Transplantation 73:1589–1593CrossRefGoogle Scholar
  20. Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 99:4391–4396CrossRefGoogle Scholar
  21. Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, Marini R, van Blitterswijk CA, Mulligan RC, D’Amore PA et al (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23:879–884CrossRefGoogle Scholar
  22. Levenberg S, Zoldan J, Basevitch Y, Langer R (2007) Endothelial potential of human embryonic stem cells. Blood 110:806–814CrossRefGoogle Scholar
  23. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105:71–77CrossRefGoogle Scholar
  24. Liu JY, Swartz DD, Peng HF, Gugino SF, Russell JA, Andreadis ST (2007) Functional tissue-engineered blood vessels from bone marrow progenitor cells. Cardiovasc Res 75(3):618–628CrossRefGoogle Scholar
  25. Losordo DW, Schatz RA, White CJ, Udelson JE, Veereshwarayya V, Durgin M, Poh KK, Weinstein R, Kearney M, Chaudhry M et al (2007) Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 115:3165–3172CrossRefGoogle Scholar
  26. Matsumoto K, Yoshitomi H, Rossant J, Zaret KS (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294:559–563CrossRefGoogle Scholar
  27. Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J (2007) In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109:4761–4768CrossRefGoogle Scholar
  28. Moon JJ, Lee SH, West JL (2007) Synthetic biomimetic hydrogels incorporated with ephrin-A1 for therapeutic angiogenesis. Biomacromolecules 8:42–49CrossRefGoogle Scholar
  29. Nomi M, Atala A, Coppi PD, Soker S (2002) Principals of neovascularization for tissue engineering. Mol Aspects Med 23:463–483CrossRefGoogle Scholar
  30. Nor JE, Peters MC, Christensen JB, Sutorik MM, Linn S, Khan MK, Addison CL, Mooney DJ, Polverini PJ (2001) Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Invest 81:453–463CrossRefGoogle Scholar
  31. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705CrossRefGoogle Scholar
  32. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefGoogle Scholar
  33. Rajangam K, Behanna HA, Hui MJ, Han X, Hulvat JF, Lomasney JW, Stupp SI (2006) Heparin binding nanostructures to promote growth of blood vessels. Nano Lett 6:2086–2090CrossRefGoogle Scholar
  34. Rotmans JI, Heyligers JM, Verhagen HJ, Velema E, Nagtegaal MM, de Kleijn DP, de Groot FG, Stroes ES, Pasterkamp G (2005) In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation 112:12–18CrossRefGoogle Scholar
  35. Schechner JS, Nath AK, Zheng L, Kluger MS, Hughes CC, Sierra-Honigmann MR, Lorber MI, Tellides G, Kashgarian M, Bothwell AL et al (2000) In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc Natl Acad Sci USA 97:9191–9196CrossRefGoogle Scholar
  36. Schmidt D, Mol A, Neuenschwander S, Breymann C, Gossi M, Zund G, Turina M, Hoerstrup SP (2005) Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells. Eur J Cardiothorac Surg 27:795–800CrossRefGoogle Scholar
  37. Schmidt D, Asmis LM, Odermatt B, Kelm J, Breymann C, Gossi M, Genoni M, Zund G, Hoerstrup SP (2006) Engineered living blood vessels: functional endothelia generated from human umbilical cord-derived progenitors. Ann Thorac Surg 82:1465–1471; discussion 1471CrossRefGoogle Scholar
  38. Schmidt D, Mol A, Breymann C, Achermann J, Odermatt B, Gossi M, Neuenschwander S, Pretre R, Genoni M, Zund G et al (2006b) Living autologous heart valves engineered from human prenatally harvested progenitors. Circulation 114:I125–I131CrossRefGoogle Scholar
  39. Schuster MD, Kocher AA, Seki T, Martens TP, Xiang G, Homma S, Itescu S (2004) Myocardial neovascularization by bone marrow angioblasts results in cardiomyocyte regeneration. Am J Physiol Heart Circ Physiol 287:H525–H532CrossRefGoogle Scholar
  40. Shimizu K, Sugiyama S, Aikawa M, Fukumoto Y, Rabkin E, Libby P, Mitchell RN (2001) Host bone-marrow cells are a source of donor intimal smooth- muscle-like cells in murine aortic transplant arteriopathy. Nat Med 7:738–741CrossRefGoogle Scholar
  41. Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, Sakamoto T, Nagatsu M, Kurosawa H (2005) Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 129:1330–1338CrossRefGoogle Scholar
  42. Shirota T, He H, Yasui H, Matsuda T (2003) Human endothelial progenitor cell-seeded hybrid graft: proliferative and antithrombogenic potentials in vitro and fabrication processing. Tissue Eng 9:127–136CrossRefGoogle Scholar
  43. Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, Bouxsein ML, Faugere MC, Guldberg RE, Gerstenfeld LC et al (2007) The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 117:1616–1626CrossRefGoogle Scholar
  44. Wu X, Rabkin-Aikawa E, Guleserian KJ, Perry TE, Masuda Y, Sutherland FW, Schoen FJ, Mayer JE Jr, Bischoff J (2004) Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am J Physiol Heart Circ Physiol 287:H480–H487CrossRefGoogle Scholar
  45. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S (2000) Flk1-positive ce lls derived from embryonic stem cells serve as vascular progenitors. Nature 408:92–96CrossRefGoogle Scholar
  46. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Vascular Biology Program and Department of SurgeryChildren’s Hospital Boston and Harvard Medical SchoolBostonUSA

Personalised recommendations