Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles pp 347-378 | Cite as
Injectable Hydrogels: From Basics to Nanotechnological Features and Potential Advances
Conference paper
First Online:
- 956 Downloads
Abstract
The purpose of this contribution is twofold: firstly, to describe methods of preparation, physical chemical properties, and potential issues of injectable hydrogel-based formulations from a tissue engineering perspective, and, secondly, to highlight their nanotechnological features and future potentials.
Keywords
Hydrogels Injectable formulations Reticulation processes Swelling Meshes Nanochannels Permissivity Lower critical solution temperature (LCST) Degradation Nanotechnology Tissue engineering Drug delivery Cell encapsulationNotes
Acknowledgements
This work has been supported by MIUR (PRIN 2005, project number: 2005035525) and Fondazione Banco di Sardegna (project number: 2003.0476).
References
- Ahmed TA, Griffith M, Hincke M (2007) Characterization and inhibition of fibrin hydrogel-degrading enzymes during development of tissue engineering scaffolds. Tissue Eng 13(7):1469–1477CrossRefGoogle Scholar
- Akbuga J, Ozbas-Turan S, Erdogan N (2004) Plasmid-DNA loaded chitosan microspheres for in vitro IL-2 expression. Eur J Pharm Biopharm 58(3):501–507CrossRefGoogle Scholar
- An YH, Webb D, Gutowska A, Mironov VA, Friedman RJ (2001) Regaining chondrocyte phenotype in thermosensitive gel culture. Anat Rec 263(4):336–341CrossRefGoogle Scholar
- Andrzejewska E (2001) Photopolymerization kinetics of multifunctional monomers. Prog Polym Sci 26(4):605–665CrossRefGoogle Scholar
- Anseth KS, Burdick JA (2002) New directions in photopolymerizable biomaterials. MRS Bull 27(2):130–136CrossRefGoogle Scholar
- Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17(17):1647–1657CrossRefGoogle Scholar
- Arevalo-Silva CA, Eavey RD, Cao Y, Vacanti M, Weng Y, Vacanti CA (2000) Internal support of tissue-engineered cartilage. Arch Otolaryngol Head Neck Surg 126(12):1448–1452Google Scholar
- Arica MY, Bayramoglu G, Arica B, Yalçin E, Ito K, Yagci Y (2005) Novel hydrogel membrane based on copoly(hydroxyethyl methacrylate/p-vinylbenzyl-poly(ethylene oxide)) for biomedical applications: properties and drug release characteristics. Macromol Biosci 5(10):983–992CrossRefGoogle Scholar
- Arimura H, Ouchi T, Kishida A, Ohya Y (2005) Preparation of a hyaluronic acid hydrogel through polyion complex formation using cationic polylactide-based microspheres as a biodegradable crosslinking agent. J Biomater Sci Polym Ed 16(11):1347–1358CrossRefGoogle Scholar
- Atala A, Lanza RP (eds) (2002) Methods in tissue engineering. Academic, San Diego, CAGoogle Scholar
- Baroli B (2006) Photopolymerization in drug delivery, tissue engineering and cell encapsulation: issues and potentialities. J Chem Technol Biotechnol 81(4):491–499CrossRefGoogle Scholar
- Baroli B (2007) Hydrogels for tissue engineering and delivery of tissue-inducing substances. J Pharm Sci 96(9):2197–2223CrossRefGoogle Scholar
- Baroli B, Shastri VP, Langer R (2003) A method to protect sensitive molecules from a light-induced polymerizing environment. J Pharm Sci 92(6):1186–1195CrossRefGoogle Scholar
- Bikram M, Gobin AM, Whitmire RE, West JL (2007) Temperature-sensitive hydrogels with SiO2-Au nanoshells for controlled drug delivery. J Control Release 123(3):219–227CrossRefGoogle Scholar
- Birla RK, Huang YC, Dennis RG (2007) Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle. Tissue Eng 13(9):2239–2248CrossRefGoogle Scholar
- Bjerkvig R, Read TA, Vajkoczy P, Aebischer P, Pralong W, Platt S, Melvik JE, Hagen A, Dornish M (2003) Cell therapy using encapsulated cells producing endostatin. Acta Neurochir Suppl 88:137–141Google Scholar
- Blanco MD, Garcia O, Rosa RM, Teijon JM, Katime I (1996) 5-Fluorouracil release from copolymeric hydrogels of itaconic acid monoester. I. Acrylamide-co-monomethyl itaconate. Biomaterials 17(11):1061–1067CrossRefGoogle Scholar
- Bloch K, Vorobeychik M, Yavrians K, Azarov D, Bloch O, Vardi P (2006) Improved activity of streptozotocin-selected insulinoma cells following microencapsulation and transplantation into diabetic mice. Cell Biol Int 30(2):138–143CrossRefGoogle Scholar
- Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917CrossRefGoogle Scholar
- Boucard N, Viton C, Domard A (2005) New aspects of the formation of physical hydrogels of chitosan in a hydroalcoholic medium. Biomacromolecules 6(6):3227–3237CrossRefGoogle Scholar
- Brandl F, Sommer F, Goepferich A (2007) Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 28(2):134–146CrossRefGoogle Scholar
- Brannon-Peppas L, Peppas NA (1990a) Dynamic and equilibrium swelling behavior of pH-sensitive hydrogels containing 2-hydroxyethyl methacrylate. Biomaterials 11(9):635–644CrossRefGoogle Scholar
- Brannon-Peppas L, Peppas NA (1990) The equilibrium swelling behavior of porous and non-porous hydrogels. In: Brannon-Peppas L, Harland RS (eds) Absorbent polymer technology. Elsevier, Amsterdam, pp 67–102Google Scholar
- Bromberg LE, Ron ES (1998) Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv Drug Deliv Rev 31(3):197–221CrossRefGoogle Scholar
- Brown CD, Kreilgaard L, Nakakura M, Caram-Lelham N, Pettit DK, Gombotz WR, Hoffman AS (2001) Release of PEGylated granulocyte-macrophage colony-stimulating factor from chitosan/glycerol films. J Control Release 72(1–3):35–46CrossRefGoogle Scholar
- Bryant SJ, Nuttelman CR, Anseth KS (1999) The effects of crosslinking density on cartilage formation in photocrosslinkable hydrogels. Biomed Sci Instrum 35:309–314Google Scholar
- Bryant SJ, Nuttelman CR, Anseth KS (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11(5):439–457CrossRefGoogle Scholar
- Burdick JA, Anseth KS (2002) Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23(22):4315–4323CrossRefGoogle Scholar
- Burdick JA, Peterson AJ, Anseth KS (2001) Conversion and temperature profiles during the photoinitiated polymerization of thick orthopaedic biomaterials. Biomaterials 22(13):1779–1786CrossRefGoogle Scholar
- Burdick JA, Lovestead TM, Anseth KS (2003) Kinetic chain lengths in highly cross-linked networks formed by the photoinitiated polymerization of divinyl monomers: a gel permeation chromatography investigation. Biomacromolecules 4(1):149–156CrossRefGoogle Scholar
- Canal T, Peppas NA (1989) Correlation between mesh size and equilibrium degree of swelling of polymeric network. J Biomed Mater Res 23(10):1183–1193CrossRefGoogle Scholar
- Cao YL, Lach E, Kim TH, Rodriguez A, Arevalo CA, Vacanti CA (1998) Tissue-engineered nipple reconstruction. Plast Reconstr Surg 102(7):2293–2298CrossRefGoogle Scholar
- Cascone MG, Maltinti S, Barbani N, Laus M (1999) Effect of chitosan and dextran on the properties of poly(vinyl alcohol) hydrogels. J Mater Sci Mater Med 10(7):431–435CrossRefGoogle Scholar
- Causa F, Netti PA, Ambrosio L (2007) A multi-functional scaffold for tissue regeneration: The need to engineer a tissue analogue. Biomaterials 28(34):5093–5099CrossRefGoogle Scholar
- Chellat F, Tabrizian M, Dumitriu S, Chornet E, Magny P, Rivard CH, Yahia L (2000) In vitro and in vivo biocompatibility of chitosan-xanthan polyionic complex. J Biomed Mater Res 51(1):107–116CrossRefGoogle Scholar
- Chen JP, Cheng TH (2006) Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol Biosci 6(12):1026–1039CrossRefGoogle Scholar
- Chen J, Jo S, Park K (1997) Degradable hydrogels. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. Overseas Publishers Association, Amsterdam, pp 203–230Google Scholar
- Chen S, Pieper R, Webster DC, Singh J (2005) Triblock copolymers: synthesis, characterization, and delivery of a model protein. Int J Pharm 288(2):207–218CrossRefGoogle Scholar
- Chen YM, Tanaka M, Gong JP, Yasuda K, Yamamoto S, Shimomura M, Osada Y (2007) Platelet adhesion to human umbilical vein endothelial cells cultured on anionic hydrogel scaffolds. Biomaterials 28(10):1752–1760CrossRefGoogle Scholar
- Cheng SY, Heilman S, Wasserman M, Archer S, Shuler ML, Wu M (2007) A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7(6):763–739CrossRefGoogle Scholar
- Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21(21):2155–2161CrossRefGoogle Scholar
- Chinen N, Tanihara M, Nakagawa M, Shinozaki K, Yamamoto E, Mizushima Y, Suzuki Y (2003) Action of microparticles of heparin and alginate crosslinked gel when used as injectable artificial matrices to stabilize basic fibroblast growth factor and induce angiogenesis by controlling its release. J Biomed Mater Res A 67(1):61–68CrossRefGoogle Scholar
- Cho BC, Kim JY, Lee JH, Chung HY, Park JW, Roh KH, Kim GU, Kwon IC, Jang KH, Lee DS, Park NW, Kim IS (2004) The bone regenerative effect of chitosan microsphere-encapsulated growth hormone on bony consolidation in mandibular distraction osteogenesis in a dog model. J Craniofac Surg 15(2):299–311; discussion 312–333Google Scholar
- Cho JH, Kim SH, Park KD, Jung MC, Yang WI, Han SW, Noh JY, Lee JW (2004b) Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials 25(26):5743–5751CrossRefGoogle Scholar
- Choi S, Kim SW (2003) Controlled release of insulin from injectable biodegradable triblock copolymer depot in ZDF rats. Pharm Res 20(12):2008–2010CrossRefGoogle Scholar
- Choi SH, Yoon JJ, Park TG (2002) Galactosylated poly(N-isopropylacrylamide) hydrogel submicrometer particles for specific cellular uptake within hepatocytes. J Colloid Interface Sci 251(1):57–63CrossRefGoogle Scholar
- Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH (2005) Insulin-transferrin-selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage. Eur Cell Mater 9:58–67; discussion 67Google Scholar
- Clark RAF (2007) Special Issue, Natural and artificial cellular microenvironments for soft tissue repair. Adv Drug Deliv Rev 59(13):1291–1292Google Scholar
- Comisar WA, Kazmers NH, Mooney DJ, Linderman JJ (2007) Engineering RGD nanopatterned hydrogels to control preosteoblast behavior: a combined computational and experimental approach. Biomaterials 28(30):4409–4417CrossRefGoogle Scholar
- Cortiella J, Nichols JE, Kojima K, Bonassar LJ, Dargon P, Roy AK, Vacant MP, Niles JA, Vacanti CA (2006) Tissue-engineered lung: an in vivo and in vitro comparison of polyglycolic acid and pluronic F-127 hydrogel/somatic lung progenitor cell constructs to support tissue growth. Tissue Eng 12(5):1213–1225CrossRefGoogle Scholar
- Couvreur P, Barratt G, Fattal E, Legrand P, Vauthier C (2002) Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 19(2):99–134CrossRefGoogle Scholar
- Cruise GM, Hegre OD, Scharp DS, Hubbell JA (1998) A sensitivity study of the key parameters in the interfacial photopolymerization of the poly(ethylene glycol) diacrylate upon porcine islets. Biotechnol Bioeng 57(6):655–665CrossRefGoogle Scholar
- Cruise GM, Hegre OD, Lamberti FV, Hager SR, Hill R, Scharp DS, Hubbell JA (2000) In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly(ethylene glycol) diacrylate membranes. Cell Transplant 8(3):293–306Google Scholar
- Cui FZ, Tian WM, Hou SP, Xu QY, Lee IS (2006) Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering. J Mater Sci Mater Med 17(12):1393–1401CrossRefGoogle Scholar
- Daronch M, Rueggeberg FA, Hall G, De Goes MF (2007) Effect of composite temperature on in vitro intrapulpal temperature rise. Dent Mater 23(10):1283–1288CrossRefGoogle Scholar
- Davalli AM, Galbiati F, Bertuzzi F, Polastri L, Pontiroli AE, Perego L, Freschi M, Pozza G, Folli F, Meoni C (2000) Insulin-secreting pituitary GH3 cells: a potential beta-cell surrogate for diabetes cell therapy. Cell Transplant 9(6):841–851Google Scholar
- De Laporte L, Shea LD (2007) Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Deliv Rev 59(4–5):292–307CrossRefGoogle Scholar
- De Rosa M, Carteni’ M, Petillo O, Calarco A, Margarucci S, Rosso F, De Rosa A, Farina E, Grippo P, Peluso G (2004) Cationic polyelectrolyte hydrogel fosters fibroblast spreading, proliferation, and extracellular matrix production: Implications for tissue engineering. J Cell Physiol 198(1):133–143CrossRefGoogle Scholar
- De Wijn JR, van Mullem PJ (1990) In: Williams D (ed) Concise encyclopedia of medical and dental materials. MIT, Cambridge, pp 14–21Google Scholar
- Delgado JJ, Evora C, Sanchez E, Baro M, Delgado A (2006) Validation of a method for non-invasive in vivo measurement of growth factor release from a local delivery system in bone. J Control Release 114(2):223–229CrossRefGoogle Scholar
- Desai NP, Hubbell JA (1989) The short-term blood biocompatibility of poly(hydroxyethyl methacrylate-co-methyl methacrylate) in an in vitro flow system measured by digital videomicroscopy. J Biomater Sci Polym Ed 1(2):123–146CrossRefGoogle Scholar
- Desmangles AI, Jordan O, Marquis-Weible F (2001) Interfacial photopolymerization of beta-cell clusters: approaches to reduce coating thickness using ionic and lipophilic dyes. Biotechnol Bioeng 72(6):634–641CrossRefGoogle Scholar
- Díez-Peña E, Quijada-Garrido I, Barales-Rienda JM (2002) Hydrogen-bonding effects on the dynamic swelling of P(N-iPAAm-co-MAA) copolymers. A case of autocatalytic swelling kinetics. Macromolecules 35(23):8882–8888CrossRefGoogle Scholar
- Ding K, Alemdaroglu FE, Börsch M, Berger R, Herrmann A (2007) Engineering the structural properties of DNA block copolymer micelles by molecular recognition. Angew Chem Int Ed 46(7):1172–1175CrossRefGoogle Scholar
- Dobie K, Smith G, Sloan AJ, Smith AJ (2002) Effects of alginate hydrogels and TGF-beta 1 on human dental pulp repair in vitro. Connect Tissue Res 43(2–3):387–390Google Scholar
- Dodla MC, Bellamkonda RV (2006) Anisotropic scaffolds facilitate enhanced neurite extension in vitro. J Biomed Mater Res A 78(2):213–221Google Scholar
- Dodla MC, Bellamkonda RV (2008) Differences between the effect of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds on nerve regeneration across long peripheral nerve gaps. Biomaterials 29(1):33–46CrossRefGoogle Scholar
- Duncan AC, Sefton MV, Brash JL (1997) Effect of C4-, C8- and C18-alkylation of poly(vinyl alcohol) hydrogels on the adsorption of albumin and fibrinogen from buffer and plasma: limited correlation with platelet interactions. Biomaterials 18(24):1585–1592CrossRefGoogle Scholar
- Dunne NJ, Orr JF (2002) Curing characteristics of acrylic bone cement. J Mater Sci Mater Med 13(1):17–22CrossRefGoogle Scholar
- Duvvuri S, Janoria KG, Mitra AK (2005) Development of a novel formulation containing poly(d, l-lactide-co-glycolide) microspheres dispersed in PLGA-PEG-PLGA gel for sustained delivery of ganciclovir. J Control Release 108(2–3):282–293CrossRefGoogle Scholar
- Ehrick JD, Deo SK, Browning TW, Bachas LG, Madou MJ, Daunert S (2005) Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics. Nat Mater 4(4):298–302CrossRefGoogle Scholar
- Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Langer R (1999) Transdermal photopolymerization for minimally invasive implantation. Proc Natl Acad Sci USA 96(6):3104–3107CrossRefGoogle Scholar
- Emerich DF, Salzberg HC (2001) Update on immunoisolation cell therapy for CNS diseases. Cell Transplant 10(1):3–24Google Scholar
- Fedorovich NE, Alblas J, de Wijn JR, Hennink WE, Verbout AJ, Dhert WJ (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13(8):1905–1925CrossRefGoogle Scholar
- Ferreira LS, Gerecht S, Fuller J, Shieh HF, Vunjak-Novakovic G, Langer R (2007) Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials 28(17):2706–2717CrossRefGoogle Scholar
- Flory PJ (1950) Statistical mechanics of swelling of network structure. J Chem Phys 18(1):108–111CrossRefGoogle Scholar
- Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, NYGoogle Scholar
- Flory PJ, Rehner J (1943a) Statistical mechanics of cross-linked polymer networks. I. Rubberlike elasticity. J Chem Phys 11(11):512–520CrossRefGoogle Scholar
- Flory PJ, Rehner J (1943b) Statistical mechanics of cross-linked polymer networks. II. Swelling. J Chem Phys 11(11):521–526CrossRefGoogle Scholar
- Flory PJ, Rabjohn N, Schaffer MC (1949) Dependence of elastic properties of vulcanized rubber on the degree of cross linking. J Polym Sci 4(3):225–245CrossRefGoogle Scholar
- Frimpong RA, Fraser S, Hilt JZ (2007) Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites. J Biomed Mater Res A 80(1):1–6Google Scholar
- Furth ME, Atala A, Van Dyke ME (2007) Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 28(34):5068–5073CrossRefGoogle Scholar
- Gajewiak J, Cai S, Shu XZ, Prestwich GD (2006) Aminooxy pluronics: synthesis and preparation of glycosaminoglycan adducts. Biomacromolecules 7(6):1781–1789CrossRefGoogle Scholar
- Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36(8):1263–1269CrossRefGoogle Scholar
- Gehrke SH, Fisher JP, Palasis M, Lund ME (1997) Factors determining hydrogel permeability. Ann N Y Acad Sci 831:179–207CrossRefGoogle Scholar
- Gemmell CH, Black JP, Yeo EL, Sefton MV (1996) Material-induced up-regulation of leukocyte CD11b during whole blood contact: material differences and a role for complement. J Biomed Mater Res 32(1):29–35CrossRefGoogle Scholar
- Ghosh K, Liu Y, Palumbo FS, Luo Y, Clark RA, Prestwich GD (2004) Attachment and spreading of fibroblasts on an RGD peptide-modified injectable hyaluronan hydrogel. J Biomed Mater Res A 68(2):365–375Google Scholar
- Ghosh K, Ren XD, Shu XZ, Prestwich GD, Clark RA (2006) Fibronectin functional domains coupled to hyaluronan stimulate adult human dermal fibroblast responses critical for wound healing. Tissue Eng 12(3):601–613CrossRefGoogle Scholar
- Giavaresi G, Torricelli P, Fornasari PM, Giardino R, Barbucci R, Leone G (2005) Blood vessel formation after soft-tissue implantation of hyaluronan-based hydrogel supplemented with copper ions. Biomaterials 26(16):3001–3008CrossRefGoogle Scholar
- Gil ES, Frankowski DJ, Spontak RJ, Hudson SM (2005) Swelling behavior and morphological evolution of mixed gelatin/silk fibroin hydrogels. Biomacromolecules 6(6):3079–3087CrossRefGoogle Scholar
- Goodner MD, Bowman CN (2002) Development of a comprehensive free radical photopolymerization model incorporating heat and mass transfer effects in thick films. Chem Eng Sci 57(5):887–900CrossRefGoogle Scholar
- Gu Z, Alexandridis P (2005) Drying of films formed by ordered poly(ethylene oxide)-poly(propylene oxide) block copolymer gels. Langmuir 21(5):1806–1817CrossRefGoogle Scholar
- Gu ZQ, Xiao JM, Zhang XH (1998) The development of artificial articular cartilage-PVA-hydrogel. Biomed Mater Eng 8(2):75–81Google Scholar
- Gu F, Amsden B, Neufeld R (2004) Sustained delivery of vascular endothelial growth factor with alginate beads. J Control Release 96(3):463–472CrossRefGoogle Scholar
- Guenet JM (1992) Thermoreversible gelation of polymers and biopolymers. Academic, LondonGoogle Scholar
- Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16Google Scholar
- Guo T, Zhao J, Chang J, Ding Z, Hong H, Chen J, Zhang J (2006) Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-beta1 for chondrocytes proliferation. Biomaterials 27(7):1095–1103CrossRefGoogle Scholar
- Gupta V, Grande-Allen KJ (2006) Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells. Cardiovasc Res 72(3):375–383CrossRefGoogle Scholar
- Gwak SJ, Bhang SH, Kim IK, Kim SS, Cho SW, Jeon O, Yoo KJ, Putnam AJ, Kim BS (2008) The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes. Biomaterials 29(7):844–856CrossRefGoogle Scholar
- Hahn MS, Teply BA, Stevens MM, Zeitels SM, Langer R (2006) Collagen composite hydrogels for vocal fold lamina propria restoration. Biomaterials 27(7):1104–1109CrossRefGoogle Scholar
- Haque T, Chen H, Ouyang W, Martoni C, Lawuyi B, Urbanska AM, Prakash S (2005) In vitro study of alginate-chitosan microcapsules: an alternative to liver cell transplants for the treatment of liver failure. Biotechnol Lett 27(5):317–322CrossRefGoogle Scholar
- Hari PR, Ajithkumar B, Sharma CP (1993) Hydrogen grafted polymer surfaces: interaction and morphology of platelets. J Biomater Appl 8(2):174–182CrossRefGoogle Scholar
- Hassan CM, Peppas NA (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33(7):2472–2479CrossRefGoogle Scholar
- He X, Jabbari E (2007) Material properties and cytocompatibility of injectable MMP degradable poly(lactide ethylene oxide fumarate) hydrogel as a carrier for marrow stromal cells. Biomacromolecules 8(3):780–792CrossRefGoogle Scholar
- Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54(1):13–16CrossRefGoogle Scholar
- Hern DL, Hubbell JA (1998) Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res 39(2):266–276CrossRefGoogle Scholar
- Hill E, Boontheekul T, Mooney DJ (2006) Designing scaffolds to enhance transplanted myoblast survival and migration. Tissue Eng 12(5):1295–1304CrossRefGoogle Scholar
- Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54(1):3–12CrossRefGoogle Scholar
- Holland TA, Mikos AG (2006) Biodegradable polymeric scaffolds. Improvements in bone tissue engineering through controlled drug delivery. Adv Biochem Eng Biotechnol 102:161–185Google Scholar
- Holland TA, Tessmar JK, Tabata Y, Mikos AG (2004) Transforming growth factor-beta 1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J Control Release 94(1):101–114CrossRefGoogle Scholar
- Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524. Erratum in: Nat Mater 5(7):590 (2006)Google Scholar
- Hong Y, Mao Z, Wang H, Gao C, Shen J (2006) Covalently crosslinked chitosan hydrogel formed at neutral pH and body temperature. J Biomed Mater Res 79(4):913–922CrossRefGoogle Scholar
- Hong H, McCullough CM, Stegemann JP (2007) The role of ERK signaling in protein hydrogel remodeling by vascular smooth muscle cells. Biomaterials 28(26):3824–3833CrossRefGoogle Scholar
- Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y (2006) Ectopic bone formation in collagen sponge self-assembled peptide-amphiphile nanofibers hybrid scaffold in a perfusion culture bioreactor. Biomaterials 27(29):5089–5098CrossRefGoogle Scholar
- Hsieh CY, Hsieh HJ, Liu HC, Wang DM, Hou LT (2006) Fabrication and release behavior of a novel freeze-gelled chitosan/gamma-PGA scaffold as a carrier for rhBMP-2. Dent Mater 22(7):622–629CrossRefGoogle Scholar
- Hu SH, Liu TY, Liu DM, Chen SY (2007) Nano-ferrosponges for controlled drug release. J Control Release 121(3):181–189CrossRefGoogle Scholar
- Hubbell JA (1996) Hydrogel systems for barriers and local drug delivery in the control of wound healing. J Control Release 39(2):305–313CrossRefGoogle Scholar
- Hutmacher DW, Goh JC, Teoh SH (2001) An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med Singapore 30(2):183–191Google Scholar
- Ilkhanizadeh S, Teixeira AI, Hermanson O (2007) Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials 28(27):3936–3943CrossRefGoogle Scholar
- Ishihara K, Aragaki R, Ueda T, Watenabe A, Nakabayashi N (1990) Reduced thrombogenicity of polymers having phospholipid polar groups. J Biomed Mater Res 24(8):1069–1077CrossRefGoogle Scholar
- Ito A, Akiyama H, Kawabe Y, Kamihira M (2007) Magnetic force-based cell patterning using Arg-Gly-Asp (RGD) peptide-conjugated magnetite cationic liposomes. J Biosci Bioeng 104(4):288–293CrossRefGoogle Scholar
- Jefferis CD, Lee AJC, Ling RSM (1975) Thermal aspects of self-curing poly(methyl methacrylate). J Bone Joint Surg 57B:511–518Google Scholar
- Jeong B, Bae YH, Kim SW (2000a) In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. J Biomed Mater Res 50(2):171–177CrossRefGoogle Scholar
- Jeong B, Bae YH, Kim SW (2000b) Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J Control Release 63(1–2):155–163CrossRefGoogle Scholar
- Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 54(1):37–51CrossRefGoogle Scholar
- Jeong JH, Kim S, Park TG (2004) Biodegradable triblock copolymer of PLGA-PEG-PLGA enhances gene transfection efficiency. Pharm Res 21(1):50–54CrossRefGoogle Scholar
- Johnson PM, Stansbury JW, Bowman CN (2007) Photopolymer kinetics using light intensity gradients in high-throughput conversion analysis. Polymer 48(21):6319–6324CrossRefGoogle Scholar
- Joshi PP, Merchant SA, Wang Y, Schmidtke DW (2005) Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Anal Chem 77(10):3183–3188CrossRefGoogle Scholar
- Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491CrossRefGoogle Scholar
- Karande TS, Ong JL, Agrawal CM (2004) Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 32(12):1728–1743CrossRefGoogle Scholar
- Kawaguchi M, Fukushima T, Hayakawa T, Nakashima N, Inoue Y, Takeda S, Okamura K, Taniguchi K (2006) Preparation of carbon nanotube-alginate nanocomposite gel for tissue engineering. Dent Mater J 25(4):719–725CrossRefGoogle Scholar
- Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28(34):5087–5092CrossRefGoogle Scholar
- Khare AR, Peppas NA (1995) Swelling/deswelling of anionic copolymer gels. Biomaterials 16(7):559–567CrossRefGoogle Scholar
- Kidoaki S, Matsuda T (2008) Microelastic gradient gelatinous gels to induce cellular mechanotaxis. J Biotechnol 133(2):225–230CrossRefGoogle Scholar
- Kierszenbaum AL (2002) Histology and cell biology. An introduction to pathology. Mosby, St. Louis, MOGoogle Scholar
- Kim S, Healy KE (2003) Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. Biomacromolecules 4(5):1214–1223CrossRefGoogle Scholar
- Kim S, Chung EH, Gilbert M, Healy KE (2005) Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co-acrylic acid) semi-interpenetrating polymer networks. I. Degradation and cell migration. J Biomed Mater Res A 75(1):73–88Google Scholar
- Kimura M, Fukumoto K, Watanabe J, Ishihara K (2004) Hydrogen-bonding-driven spontaneous gelation of water-soluble phospholipid polymers in aqueous medium. J Biomater Sci Polym Ed 15(5):631–644CrossRefGoogle Scholar
- Kimura M, Fukumoto K, Watanabe J, Takai M, Ishihara K (2005) Spontaneously forming hydrogel from water-soluble random- and block-type phospholipid polymers. Biomaterials 26(34):6853–6862CrossRefGoogle Scholar
- Kimura M, Takai M, Ishihara K (2007) Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels. J Biomed Mater Res A 80(1):45–54Google Scholar
- Kirkpatrick CJ, Fuchs S, Hermanns MI, Peters K, Unger RE (2007) Cell culture models of higher complexity in tissue engineering and regenerative medicine. Biomaterials 28(34):5193–5198CrossRefGoogle Scholar
- Ko HC, Milthorpe BK, McFarland CD (2007) Engineering thick tissues – the vascularisation problem. Eur Cell Mater 14:1–18; discussion 18–19Google Scholar
- Konno T, Ishihara K (2007) Temporal and spatially controllable cell encapsulation using a water-soluble phospholipid polymer with phenylboronic acid moiety. Biomaterials 28(10):1770–1777CrossRefGoogle Scholar
- Kopeček J (2007) Hydrogel biomaterials: A smart future? Biomaterials 28(34):5185–5192CrossRefGoogle Scholar
- Kovtyukhova NI, Mallouk TE, Pan L, Dickey EC (2003) Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of carbon nanotube ropes. J Am Chem Soc 125(32):9761–9769CrossRefGoogle Scholar
- Kretsinger JK, Haines LA, Ozbas B, Pochan DJ, Schneider JP (2005) Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces. Biomaterials 26(25):5177–5186CrossRefGoogle Scholar
- Kůdela V (1989) In: Kroschwitz JI (ed) Polymers: biomaterials and medical applications. Wiley, New York, pp 228–252Google Scholar
- Kwon YM, Kim SW (2004) Biodegradable triblock copolymer microspheres based on thermosensitive sol-gel transition. Pharm Res 21(2):339–343CrossRefGoogle Scholar
- Kwon IK, Matsuda T (2006) Photo-iniferter-based thermoresponsive block copolymers composed of poly(ethylene glycol) and poly(N-isopropylacrylamide) and chondrocyte immobilization. Biomaterials 27(7):986–995CrossRefGoogle Scholar
- Lal H, Verma SK, Smith M, Guleria RS, Lu G, Foster DM, Dostal DE (2007) Stretch-induced MAP kinase activation in cardiac myocytes: differential regulation through beta1-integrin and focal adhesion kinase. J Mol Cell Cardiol 43(2):137–147CrossRefGoogle Scholar
- Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926CrossRefGoogle Scholar
- Langer R, Vacanti JP (1995) Artificial organs. Sci Am 273(3):130–133Google Scholar
- Langer RS, Vacanti JP (1999) Tissue engineering: the challenges ahead. Sci Am 280(4):86–89CrossRefGoogle Scholar
- Lao UL, Sun M, Matsumoto M, Mulchandani A, Chen W (2007) Genetic engineering of self-assembled protein hydrogel based on elastin-like sequences with metal binding functionality. Biomacromolecules 8(12):3736–3739CrossRefGoogle Scholar
- Lee KY, Peters MC, Anderson KW, Mooney DJ (2000a) Controlled growth factor release from synthetic extracellular matrices. Nature 408(6815):998–1000CrossRefGoogle Scholar
- Lee YM, Park YJ, Lee SJ, Ku Y, Han SB, Klokkevold PR, Chung CP (2000b) The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier. J Periodontol 71(3):418–424CrossRefGoogle Scholar
- Lee JY, Nam SH, Im SY, Park YJ, Lee YM, Seol YJ, Chung CP, Lee SJ (2002) Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J Control Release 78(1–3):187–197CrossRefGoogle Scholar
- Lee PY, Li Z, Huang L (2003) Thermosensitive hydrogel as a Tgf-beta1 gene delivery vehicle enhances diabetic wound healing. Pharm Res 20(12):1995–2000CrossRefGoogle Scholar
- Lee JE, Kim KE, Kwon IC, Ahn HJ, Lee SH, Cho H, Kim HJ, Seong SC, Lee MC (2004) Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials 25(18):4163–4173CrossRefGoogle Scholar
- Lévesque SG, Shoichet MS (2007) Synthesis of enzyme-degradable, peptide-cross-linked dextran hydrogels. Bioconjug Chem 18(3):874–885CrossRefGoogle Scholar
- Li Z, Ning W, Wang J, Choi A, Lee PY, Tyagi P, Huang L (2003) Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm Res 20(6):884–888CrossRefGoogle Scholar
- Li F, Griffith M, Li Z, Tanodekaew S, Sheardown H, Hakim M, Carlsson DJ (2005) Recruitment of multiple cell lines by collagen-synthetic copolymer matrices in corneal regeneration. Biomaterials 26(16):3093–3104CrossRefGoogle Scholar
- Li AA, Shen F, Zhang T, Cirone P, Potter M, Chang PL (2006) Enhancement of myoblast microencapsulation for gene therapy. J Biomed Mater Res B Appl Biomater 77(2):296–306Google Scholar
- Liao IC, Wan AC, Yim EK, Leong KW (2005) Controlled release from fibers of polyelectrolyte complexes. J Control Release 104(2):347–358CrossRefGoogle Scholar
- Liedl T, Dietz H, Yurke B, Simmel F (2007) Controlled trapping and release of quantum dots in a DNA-switchable hydrogel. Small 3(10):1688–1693CrossRefGoogle Scholar
- Lim SH, Liao IC, Leong KW (2006) Nonviral gene delivery from nonwoven fibrous scaffolds fabricated by interfacial complexation of polyelectrolytes. Mol Ther 13(6):1163–1172CrossRefGoogle Scholar
- Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58(12–13):1379–1408CrossRefGoogle Scholar
- Lin DC, Yurke B, Langrana NA (2004) Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J Biomech Eng 126(1):104–110CrossRefGoogle Scholar
- Lin WC, Yu DG, Yang MC (2006) Blood compatibility of novel poly(gamma-glutamic acid)/polyvinyl alcohol hydrogels. Colloids Surf B Biointerfaces 47(1):43–49CrossRefGoogle Scholar
- Liu L, Ratner BD, Sage EH, Jiang S (2007) Endothelial cell migration on surface-density gradients of fibronectin, VEGF, or both proteins. Langmuir 23(22):11168–11173CrossRefGoogle Scholar
- Liu H, Wang C, Gao Q, Liu X, Tong Z (2008) Fabrication of novel core-shell hybrid alginate hydrogel beads. Int J Pharm 351(1–2):104–112CrossRefGoogle Scholar
- Llanos GR, Sefton MV (1992) Heparin-poly(ethylene glycol)-poly(vinyl alcohol) hydrogel: preparation and assessment of thrombogenicity. Biomaterials 13(7):421–424CrossRefGoogle Scholar
- Llanos GR, Sefton MV (1993) Immobilization of poly(ethylene glycol) onto a poly(vinyl alcohol) hydrogel: 2. Evaluation of thrombogenicity. J Biomed Mater Res 27(11):1383–1391CrossRefGoogle Scholar
- Loh NK, Woerly S, Bunt SM, Wilton SD, Harvey AR (2001) The regrowth of axons within tissue defects in the CNS is promoted by implanted hydrogel matrices that contain BDNF and CNTF producing fibroblasts. Exp Neurol 170(1):72–84CrossRefGoogle Scholar
- Lovell LG, Newman SM, Bowman CN (1999) The effects of light intensity, temperature, and comonomer composition on the polymerization behavior of dimethacrylate dental resins. Dent Res 78(8):1469–1476CrossRefGoogle Scholar
- Lundskog J (1972) Heat and bone tissue. Scand J Plast Reconstr Surg Suppl 9:1–80Google Scholar
- Lustig SR, Peppas NA (1988) Solute diffusion in swollen membranes. 9. Scaling laws for solute diffusion in gels. J Appl Polym Sci 36:735–747CrossRefGoogle Scholar
- Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Müller R, Hubbell JA (2003a) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21(5):513–518CrossRefGoogle Scholar
- Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA (2003b) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA 100(9):5413–5418CrossRefGoogle Scholar
- Makino K, Hiyoshi J, Ohshima H (2001) Effects of thermosensitivity of poly (N-isopropylacrylamide) hydrogel upon the duration of a lag phase at the beginning of drug release from the hydrogel. Colloids Surf B Biointerfaces 20(4):341–346CrossRefGoogle Scholar
- Martina M, Hutmacher DW (2007) Biodegradabile polymers applied to tissue engineering research: a review. Polym Int 56(2):145–157CrossRefGoogle Scholar
- Mathews DT, Birney YA, Cahill PA, McGuinness GB (2008) Vascular cell viability on polyvinyl alcohol hydrogels modified with water-soluble and -insoluble chitosan. J Biomed Mater Res B Appl Biomater 84(2):531–540Google Scholar
- Mayer C (2005) Nanocapsules as drug delivery systems. Int J Artif Organs 28(11):1163–1171Google Scholar
- Mequanint K, Patel A, Bezuidenhout D (2006) Synthesis, swelling behavior, and biocompatibility of novel physically cross-linked polyurethane-block-poly(glycerol methacrylate) hydrogels. Biomacromolecules 7(3):883–891CrossRefGoogle Scholar
- Michalakis K, Pissiotis A, Hirayama H, Kang K, Kafantaris N (2006) Comparison of temperature increase in the pulp chamber during the polymerization of materials used for the direct fabrication of provisional restorations. J Prosthet Dent 96(6):418–423CrossRefGoogle Scholar
- Mierisch CM, Cohen SB, Jordan LC, Robertson PG, Balian G, Diduch DR (2002) Transforming growth factor-beta in calcium alginate beads for the treatment of articular cartilage defects in the rabbit. Arthroscopy 18(8):892–900CrossRefGoogle Scholar
- Milam VT, Hiddessen AL, Crocker JC, Graves DJ, Hammer DA (2003) DNA-driven assembly of biodisperse, micron-sized colloids. Langmuir 19(24):10317–10323CrossRefGoogle Scholar
- Milella E, Barra G, Ramires PA, Leo G, Aversa P, Romito A (2001) Poly(L-lactide)acid/alginate composite membranes for guided tissue regeneration. J Biomed Mater Res 57(2):248–257CrossRefGoogle Scholar
- Miralles G, Baudoin R, Dumas D, Baptiste D, Hubert P, Stoltz JF, Dellacherie E, Mainard D, Netter P, Payan E (2001) Sodium alginate sponges with or without sodium hyaluronate: in vitro engineering of cartilage. J Biomed Mater Res 57(2):268–278CrossRefGoogle Scholar
- Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609CrossRefGoogle Scholar
- Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399(6738):766–769CrossRefGoogle Scholar
- Mizuno K, Yamamura K, Yano K, Osada T, Saeki S, Takimoto N, Sakurai T, Nimura Y (2003) Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice. J Biomed Mater Res A 64(1):177–181CrossRefGoogle Scholar
- Moffatt S, Cristiano RJ (2006) PEGylated J591 mAb loaded in PLGA-PEG-PLGA tri-block copolymer for targeted delivery: in vitro evaluation in human prostate cancer cells. Int J Pharm 317(1):10–13CrossRefGoogle Scholar
- Moss JA, Stokols S, Hixon MS, Ashley FT, Chang JY, Janda KD (2006) Solid-phase synthesis and kinetic characterization of fluorogenic enzyme-degradable hydrogel cross-linkers. Biomacromolecules 7(4):1011–1016CrossRefGoogle Scholar
- Murakami Y, Maeda M (2005) DNA-responsive hydrogels that can shrink or swell. Biomacromolecules 6(6):2927–2929CrossRefGoogle Scholar
- Murakami Y, Yokoyama M, Okano T, Nishida H, Tomizawa Y, Endo M, Kurosawa H (2007) A novel synthetic tissue-adhesive hydrogel using a crosslinkable polymeric micelle. J Biomed Mater Res A 80(2):421–427Google Scholar
- Murthy PS, Murali Mohan Y, Varaprasad K, Sreedhar B, Mohana Raju K (2008) First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 318(2):217–224CrossRefGoogle Scholar
- Nagahara S, Matsuda T (1996) Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polym Gels Netw 4(2):111–127CrossRefGoogle Scholar
- Nair LS, Laurencin CT (2006) Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv Biochem Eng Biotechnol 102:47–90Google Scholar
- Nakama H, Ohsugi K, Otsuki T, Date I, Kosuga M, Okuyama T, Sakuragawa N (2006) Encapsulation cell therapy for mucopolysaccharidosis type VII using genetically engineered immortalized human amniotic epithelial cells. Tohoku J Exp Med 209(1):23–32CrossRefGoogle Scholar
- Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed Engl 44(47):7686–7708CrossRefGoogle Scholar
- Nelson EW, Jacobs JL, Scranton AB, Anseth KS, Bowman CN (1995) Photo-differential scanning calorimetry studies of cationic polymerization of divinyl ethers. Polymer 36(24):4651–4656CrossRefGoogle Scholar
- Nerem RM (2007) Cell-based therapies: from basic biology to replacement, repair, and regeneration. Biomaterials 28(34):5074–5077CrossRefGoogle Scholar
- Neumann MG, Schmitt CC, Ferreira GC, Corrêa IC (2006) The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units. Dent Mater 22(6):576–584CrossRefGoogle Scholar
- Newman KD, McLaughlin CR, Carlsson D, Li F, Liu Y, Griffith M (2006) Bioactive hydrogel-filament scaffolds for nerve repair and regeneration. Int J Artif Organs 29(11):1082–1091Google Scholar
- Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23(22):4307–4314CrossRefGoogle Scholar
- Noushi F, Richardson RT, Hardman J, Clark G, O’Leary S (2005) Delivery of neurotrophin-3 to the cochlea using alginate beads. Otol Neurotol 26(3):528–533CrossRefGoogle Scholar
- Novamatrix™, Norway (November 16, 2007) https://www.novamatrix.biz/default.asp?KategoriID=4&SubKategoriID=19&ArtikkelID=57
- Odian G (1991) Principles of polymerization. Wiley, New YorkGoogle Scholar
- Oh KS, Han SK, Choi YW, Lee JH, Lee JY, Yuk SH (2004) Hydrogen-bonded polymer gel and its application as a temperature-sensitive drug delivery system. Biomaterials 25(12):2393–2398CrossRefGoogle Scholar
- Ohya S, Nakayama Y, Matsuda T (2001) Thermoresponsive artificial extracellular matrix for tissue engineering: hyaluronic acid bioconjugated with poly(N-isopropylacrylamide) grafts. Biomacromolecules 2(3):856–863CrossRefGoogle Scholar
- Orive G, Tam SK, Pedraz JL, Hallé JP (2006) Biocompatibility of alginate-poly-L-lysine microcapsules for cell therapy. Biomaterials 27(20):3691–3700CrossRefGoogle Scholar
- Ozbas-Turan S, Akbuga J, Aral C (2002) Controlled release of interleukin-2 from chitosan microspheres. J Pharm Sci 91(5):1245–1251CrossRefGoogle Scholar
- Paek HJ, Campaner AB, Kim JL, Aaron RK, Ciombor DM, Morgan JR, Lysaght MJ (2005) In vitro characterization of TGF-beta1 release from genetically modified fibroblasts in Ca(2+)-alginate microcapsules. ASAIO J 51(4):379–384CrossRefGoogle Scholar
- Pagoria D, Lee A, Geurtsen W (2005) The effect of camphorquinone (CQ) and CQ-related photosensitizers on the generation of reactive oxygen species and the production of oxidative DNA damage. Biomaterials 26(19):4091–4099CrossRefGoogle Scholar
- Park JH, Kwon S, Nam JO, Park RW, Chung H, Seo SB, Kim IS, Kwon IC, Jeong SY (2004a) Self-assembled nanoparticles based on glycol chitosan bearing 5beta-cholanic acid for RGD peptide delivery. J Control Release 95(3):579–588CrossRefGoogle Scholar
- Park Y, Lutolf MP, Hubbell JA, Hunziker EB, Wong M (2004b) Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng 10(3–4):515–522CrossRefGoogle Scholar
- Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG (2005) Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26(34):7095–7103CrossRefGoogle Scholar
- Park YJ, Kim KH, Lee JY, Ku Y, Lee SJ, Min BM, Chung CP (2006) Immobilization of bone morphogenetic protein-2 on a nanofibrous chitosan membrane for enhanced guided bone regeneration. Biotechnol Appl Biochem 43(Pt 1):17–24Google Scholar
- Patel PN, Gobin AS, West JL, Jr Patrick CW (2005) Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation. Tissue Eng 11(9–10):1498–1505CrossRefGoogle Scholar
- Peirce SM, Price RJ, Skalak TC (2004) Spatial and temporal control of angiogenesis and arterialization using focal applications of VEGF164 and Ang-1. Am J Physiol Heart Circ Physiol 286(3):H918–H925CrossRefGoogle Scholar
- Peppas NA (1986) Hydrogel in medicine and pharmacy. CRC, Boca Raton, FLGoogle Scholar
- Peppas NA, Colombo P (1997) Analysis of drug release behavior from swellable polymer carriers using the dimensionality index. J Control Release 45(1):35–40CrossRefGoogle Scholar
- Peppas NA, Merrill EW (1976) Poly(vinyl alcohol) hydrogels – reinforcement of radiation-crosslinked networks by crystallization. J Polym Sci [A1] 14:441–457Google Scholar
- Peppas NA, Merrill EW (1977) Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks. J Appl Polym Sci 21:1763–1770CrossRefGoogle Scholar
- Peppas NA, Bures P, Leobandung W, Ichikawa H (2000a) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46CrossRefGoogle Scholar
- Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000b) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29CrossRefGoogle Scholar
- Peters MC, Isenberg BC, Rowley JA, Mooney DJ (1998) Release from alginate enhances the biological activity of vascular endothelial growth factor. J Biomater Sci Polym Ed 9(12):1267–1278CrossRefGoogle Scholar
- Petrini P, Tanzi MC, Moran CR, Graham NB (1999) Linear poly(ethylene oxide)-based polyurethane hydrogels: polyurethane-ureas and polyurethane-amides. J Mater Sci Mater Med 10(10/11):635–639CrossRefGoogle Scholar
- Pişkin E (2002) Biodegradable polymeric matrices for bioartificial implants. Int J Artif Organs 25(5):434–440Google Scholar
- Pişkin E (2004) Molecularly designed water soluble, intelligent, nanosize polymeric carriers. Int J Pharm 277(1–2):105–118CrossRefGoogle Scholar
- Plunkett KN, Berkowski KL, Moore JS (2005) Chymotrypsin responsive hydrogel: application of a disulfide exchange protocol for the preparation of methacrylamide containing peptides. Biomacromolecules 6(2):632–637CrossRefGoogle Scholar
- Prestwich GD, Shu XZ, Liu Y, Cai S, Walsh JF, Hughes CW, Ahmad S, Kirker KR, Yu B, Orlandi RR, Park AH, Thibeault SL, Duflo S, Smith ME (2006) Injectable synthetic extracellular matrices for tissue engineering and repair. Adv Exp Med Biol 585:125–133CrossRefGoogle Scholar
- Qiao M, Chen D, Ma X, Liu Y (2005) Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int J Pharm 294(1–2):103–112CrossRefGoogle Scholar
- Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339CrossRefGoogle Scholar
- Quick DJ, Anseth KS (2003) Gene delivery in tissue engineering: a photopolymer platform to coencapsulate cells and plasmid DNA. Pharm Res 20(11):1730–1737CrossRefGoogle Scholar
- Raeber GP, Lutolf MP, Hubbell JA (2005) Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys J 89(2):1374–1388CrossRefGoogle Scholar
- Ratner BD, Hoffman AS, Whiffen JD (1978) The thrombogenicity of radiation grafted polymers as measured by the vena cava ring test. J Bioeng 2(3–4):313–323Google Scholar
- Raymond J, Metcalfe A, Desfaits AC, Ribourtout E, Salazkin I, Gilmartin K, Embry G, Boock RJ (2003) Alginate for endovascular treatment of aneurysms and local growth factor delivery. AJNR Am J Neuroradiol 24(6):1214–1221Google Scholar
- Rizzi SC, Hubbell JA (2005) Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part I: Development and physicochemical characteristics. Biomacromolecules 6(3):1226–1238CrossRefGoogle Scholar
- Rokstad AM, Holtan S, Strand B, Steinkjer B, Ryan L, Kulseng B, Skjak-Braek G, Espevik T (2002) Microencapsulation of cells producing therapeutic proteins: optimizing cell growth and secretion. Cell Transplant 11(4):313–324Google Scholar
- Ruszymah BH, Chua K, Latif MA, Hussein FN, Saim AB (2005) Formation of in vivo tissue engineered human hyaline cartilage in the shape of a trachea with internal support. Int J Pediatr Otorhinolaryngol 69(11):1489–1495CrossRefGoogle Scholar
- Saim AB, Cao Y, Weng Y, Chang CN, Vacanti MA, Vacanti CA, Eavey RD (2000) Engineering autogenous cartilage in the shape of a helix using an injectable hydrogel scaffold. Laryngoscope 110(10 Pt 1):1694–1697CrossRefGoogle Scholar
- Santiago LY, Nowak RW, Peter Rubin J, Marra KG (2006) Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials 27(15):2962–2969CrossRefGoogle Scholar
- Satarkar NS, Hilt JZ (2008) Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomater 4(1):11–16CrossRefGoogle Scholar
- ESB Satellite Consensus Conference (2005) Proceedings of “19th European Conference on Biomaterials”Google Scholar
- Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124(50):15030–15037CrossRefGoogle Scholar
- Segura T, Anderson BC, Chung PH, Webber RE, Shull KR, Shea LD (2005) Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials 26(4):359–371CrossRefGoogle Scholar
- Seliktar D, Zisch AH, Lutolf MP, Wrana JL, Hubbell JA (2004) MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J Biomed Mater Res A 68(4):704–716CrossRefGoogle Scholar
- Shen F, Li AA, Cornelius RM, Cirone P, Childs RF, Brash JL, Chang PL (2005) Biological properties of photocrosslinked alginate microcapsules. J Biomed Mater Res B Appl Biomater 75(2):425–434Google Scholar
- Silverstein RM, Bassler GC, Morril TC (1991) Spectrometric identification of organic compounds, 5th edn. Wiley, New YorkGoogle Scholar
- Simmons CA, Alsberg E, Hsiong S, Kim WJ, Mooney DJ (2004) Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 35(2):562–569CrossRefGoogle Scholar
- Sirpal S, Gattás-Asfura KM, Leblanc RM (2007) A photodimerization approach to crosslink and functionalize microgels. Colloids Surf B Biointerfaces 58(2):116–120CrossRefGoogle Scholar
- Sosnik A, Sefton MV (2006) Methylation of poloxamine for enhanced cell adhesion. Biomacromolecules 7(1):331–338CrossRefGoogle Scholar
- Starr FW, Sciortino F (2006) Model for assembly and gelation of four-armed DNA dendrimers. J Phys-Condens Mat 18(26):L347–L353CrossRefGoogle Scholar
- Stile RA, Healy KE (2002) Poly(N-isopropylacrylamide)-based semi-interpenetrating polymer networks for tissue engineering applications. 1. Effects of linear poly(acrylic acid) chains on phase behavior. Biomacromolecules 3(3):591–600CrossRefGoogle Scholar
- Strzinar I, Sefton MV (1992) Preparation and thrombogenicity of alkylated polyvinyl alcohol coated tubing. J Biomed Mater Res 26(5):577–592CrossRefGoogle Scholar
- Sylven C (2002) Angiogenic gene therapy. Drugs Today 38(12):819–827CrossRefGoogle Scholar
- Tanahashi K, Mikos AG (2003) Protein adsorption and smooth muscle cell adhesion on biodegradable agmatine-modified poly(propylene fumarate-co-ethylene glycol) hydrogels. J Biomed Mater Res A 67(2):448–457CrossRefGoogle Scholar
- Tanaka S, Ogura A, Kaneko T, Murata Y, Akashi M (2004) Adhesion behavior of peritoneal cells on the surface of self-assembled triblock copolymer hydrogels. Biomacromolecules 5(6):2447–2455CrossRefGoogle Scholar
- Tarle Z, Knezevic A, Demoli N, Meniga A, Sutaloa J, Unterbrink G, Ristic M, Pichler G (2006) Comparison of composite curing parameters: effects of light source and curing mode on conversion, temperature rise and polymerization shrinkage. Oper Dent 31(2):219–226CrossRefGoogle Scholar
- Tessmar JK, Göpferich AM (2007) Matrices and scaffolds for protein delivery in tissue engineering. Adv Drug Deliv Rev 59(4–5):274–291CrossRefGoogle Scholar
- The Merriam-Webster online dictionary (November 15, 2007); http://www.m-w.com
- Thomas J, Lowman A, Marcolongo M (2003) Novel associated hydrogels for nucleus pulposus replacement. J Biomed Mater Res A 67(4):1329–1337CrossRefGoogle Scholar
- Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007) A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interface Sci 315(1):389–395CrossRefGoogle Scholar
- Tilakaratne HK, Hunter SK, Andracki ME, Benda JA, Rodgers VG (2007) Characterizing short-term release and neovascularization potential of multi-protein growth supplement delivered via alginate hollow fiber devices. Biomaterials 28(1):89–98CrossRefGoogle Scholar
- Trudel J, Massia SP (2002) Assessment of the cytotoxicity of photocrosslinked dextran and hyaluronan-based hydrogels to vascular smooth muscle cells. Biomaterials 23(16):3299–3307CrossRefGoogle Scholar
- Truffier-Boutry D, Demoustier-Champagne S, Devaux J, Biebuyck JJ, Mestdagh M, Larbanois P, Leloup G (2006) A physico-chemical explanation of the post-polymerization shrinkage in dental resins. Dent Mater 22(5):405–412CrossRefGoogle Scholar
- Uludag H, De Vos P, Tresco PA (2000) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42(1–2):29–64CrossRefGoogle Scholar
- Um SH, Lee JB, Kwon SY, Umbach CC, Luo D (2006) Enzyme-catalyzed assembly of DNA hydrogel. Nat Mater 5(10):797–801CrossRefGoogle Scholar
- Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation, Lancet 354(Suppl 1):SI32–34Google Scholar
- Vermette P, Gengenbach T, Divisekera U, Kambouris PA, Griesser HJ, Meagher L (2003) Immobilization and surface characterization of NeutrAvidin biotin-binding protein on different hydrogel interlayers. J Colloid Interface Sci 259(1):13–26CrossRefGoogle Scholar
- Vogelin E, Baker JM, Gates J, Dixit V, Constantinescu MA, Jones NF (2006) Effects of local continuous release of brain derived neurotrophic factor (BDNF) on peripheral nerve regeneration in a rat model. Exp Neurol 199(2):348–353CrossRefGoogle Scholar
- Wang C, Stewart RJ, Kopecek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397(6718):417–420CrossRefGoogle Scholar
- Wang X, Haasch RT, Bohn PW (2005) Anisotropic hydrogel thickness gradient films derivatized to yield three-dimensional composite materials. Langmuir 21(18):8452–8459CrossRefGoogle Scholar
- Wang M, Li Y, Wu J, Xu F, Zuo Y, Jansen JA (2008) In vitro and in vivo study to the biocompatibility and biodegradation of hydroxyapatite/poly(vinyl alcohol)/gelatin composite. J Biomed Mater Res A 85(2):418–426Google Scholar
- Wathier M, Johnson CS, Kim T, Grinstaff MW (2006) Hydrogels formed by multiple peptide ligation reactions to fasten corneal transplants. Bioconjug Chem 17(4):873–876CrossRefGoogle Scholar
- Webb AR, Yang J, Ameer GA (2004) Biodegradable polyester elastomers in tissue engineering. Expert Opin Biol Ther 4(6):801–812CrossRefGoogle Scholar
- Weber LM, Hayda KN, Haskins K, Anseth KS (2007) The effects of cell-matrix interactions on encapsulated beta-cell function within hydrogels functionalized with matrix-derived adhesive peptides. Biomaterials 28(19):3004–3011CrossRefGoogle Scholar
- Weinand C, Pomerantseva I, Neville CM, Gupta R, Weinberg E, Madisch I, Shapiro F, Abukawa H, Troulis MJ, Vacanti JP (2006) Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone. Bone 38(4):555–563CrossRefGoogle Scholar
- Williams DF (1999) The Williams dictionary of biomaterials. Liverpool University Press, LiverpoolGoogle Scholar
- Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH (2005) Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26(11):1211–1218CrossRefGoogle Scholar
- Wu JY, Liu SQ, Heng PW, Yang YY (2005) Evaluating proteins release from, and their interactions with, thermosensitive poly (N-isopropylacrylamide) hydrogels. J Control Release 102(2):361–372CrossRefGoogle Scholar
- Xu C, Kopeček J (2008) Genetically engineered block copolymers: Influence of the length and structure of the coiled-coil blocks on hydrogel self-assembly. Pharm Res 25(3):674–682CrossRefGoogle Scholar
- Xu C, Breedveld V, Kopecek J (2005) Reversible hydrogels from self-assembling genetically engineered protein block copolymers. Biomacromolecules 6(3):1739–1749CrossRefGoogle Scholar
- Xue L, Greisler HP (2003) Biomaterials in the development and future of vascular grafts. J Vasc Surg 37(2):472–480CrossRefGoogle Scholar
- Yamamuro T, Nakamura T, Iida H, Kawanabe K, Matsuda Y, Ido K, Tamura J, Senaha Y (1998) Development of bioactive bone cement and its clinical applications. Biomaterials 19(16):1479–1482CrossRefGoogle Scholar
- Yang J, Xu C, Wang C, Kopecek J (2006) Refolding hydrogels self-assembled from N-(2-hydroxypropyl)methacrylamide graft copolymers by antiparallel coiled-coil formation. Biomacromolecules 7(4):1187–1195CrossRefGoogle Scholar
- Yasuhara T, Date I (2007) Intracerebral transplantation of genetically engineered cells for Parkinson’s disease: toward clinical application. Cell Transplant 16(2):125–132Google Scholar
- Yeo Y, Geng W, Ito T, Kohane DS, Burdick JA, Radisic M (2007) Photocrosslinkable hydrogel for myocyte cell culture and injection. J Biomed Mater Res B Appl Biomater 81(2):312–322Google Scholar
- Yoo MK, Kweon HY, Lee KG, Lee HC, Cho CS (2004) Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poloxamer macromer. Int J Biol Macromol 34(4):263–270CrossRefGoogle Scholar
- Yu X, Dillon GP, Bellamkonda RB (1999) A laminin and nerve growth factor-laden three-dimensional scaffold for enhanced neurite extension. Tissue Eng 5(4):291–304CrossRefGoogle Scholar
- Zachos TA, Shields KM, Bertone AL (2006) Gene-mediated osteogenic differentiation of stem cells by bone morphogenetic proteins-2 or -6. J Orthop Res 24(6):1279–1291CrossRefGoogle Scholar
- Zelzer M, Majani R, Bradley JW, Rose FR, Davies MC, Alexander MR (2008) Investigation of cell-surface interactions using chemical gradients formed from plasma polymers. Biomaterials 29(2):172–184CrossRefGoogle Scholar
- Zhang Y, Cheng X, Wang J, Wang Y, Shi B, Huang C, Yang X, Liu T (2006a) Novel chitosan/collagen scaffold containing transforming growth factor-beta1 DNA for periodontal tissue engineering. Biochem Biophys Res Commun 344(1):362–369CrossRefGoogle Scholar
- Zhang X, Yu C, Xushi S, Zhang C, Tang T, Dai K (2006b) Direct chitosan-mediated gene delivery to the rabbit knee joints in vitro and in vivo. Biochem Biophys Res Commun 341(1):202–208CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media B.V. 2010