Nano-engineered Thin Films for Cell and Tissue-Contacting Applications

  • Richard F. HaglundJr.Email author
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


Thin films of bioactive, biocompatible and biotherapeutic materials are crucial to many applications in bioengineering and medicine, but the susceptibility of these materials to thermal damage forbids the application of many conventional thin-film deposition technologies. Here we describe a novel approach to depositing thin nanostructured thin films using resonant mid-infrared laser ablation. This vapor-phase technique – which can be employed either in vacuum or in air or another ambient gas environment – circumvents many difficulties attendant to conventional liquid-phase deposition technologies, such as spin- and dip-coating. It makes possible, for example, multilayer deposition with sharp interfaces, and patterning by means of shadow-masking. Examples of the technique on bio-compatible and -degradable polymers, nucleic acids, fluoropolymers and functionalized nanoparticles are described. In conclusion, current developments in laser technology are discussed that can enable this thin-film deposition technique, now based on tunable, picosecond mid-infrared free-electron lasers, to be realized using mid-infrared solid-state, table-top laser sources with similar characteristics.


Pulsed laser deposition of nanostructured thin films Tunable picosecond, mid-infrared lasers Thin films of poly(ethylene glycol), poly(DL-lactide-co-glycolide), poly(tetrafluoroethylene), silica nanoparticles 



It is a pleasure to acknowledge the expertise and insight of those who have contributed to much to the development of the RIR-PLD technique and to the understanding of the underlying mechanisms: Daniel D. M. Bubb (Rutgers University-Camden); James S. Horwitz, Michael R. Papantonakis and Duane L. Simonsen (Naval Research Laboratory); Erik Herz and Ulrich B. Wiesner (Cornell University); and Nicole L. Dygert, Stephen L. Johnson and Kenneth E. Schriver (Vanderbilt University). Financial support for the research at Vanderbilt has been provided by the Naval Research Laboratory, AppliFlex LLC and the Air Force Office of Scientific Research through the Medical Free-Electron Laser Program of the Department of Defense (F49620-01-1-0429), and is hereby gratefully acknowledged.


  1. Abarrategi A, Gutierrez MC, Moreno-Vicente C, Hortiguela MJ, Ramos V, Lopez-Lacomba JL, Ferrer ML, del Monte F (2008) Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29(1):94–102CrossRefGoogle Scholar
  2. Athanasiou KA, Agrawal CM, Barber FA, Burkhart SS (1998) Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 14(7):726–737CrossRefGoogle Scholar
  3. Becker K, Johnson JB, Edwards GS (1994) Broadband Pockels cell and driver for a Mark III-type free electron laser. Rev Sci Instrum 65(5):6CrossRefGoogle Scholar
  4. Brunner F, Innerhofer E, Marchese SV, Sudmeyer T, Paschotta R, Usami T, Ito H, Kurimura S, Kitamura K, Arisholm G, Keller U (2004) Powerful red-green-blue laser source pumped with a mode-locked thin, disk laser. Opt Lett 29(16):1921–1923CrossRefGoogle Scholar
  5. Bubb DM, Haglund RF Jr (2006) Resonant infrared pulsed laser ablation and deposition of thin polymer films. In: Eason R (ed) Pulsed laser deposition of thin films: applications-led growth of functional materials. Wiley, New York, pp 35–61Google Scholar
  6. Bubb DM, Toftmann B, Haglund RF, Horwitz JS, Papantonakis MR, McGill RA, Wu PW, Chrisey DB (2002) Resonant infrared pulsed laser deposition of thin biodegradable polymer films. Appl Phys A-Mater 74(1):123–125CrossRefGoogle Scholar
  7. Bubb DM, Johnson SL, Belmont R, Schriver KE, Haglund RF, Antonacci C, Yeung LS (2006a) Mode-specific effects in resonant infrared ablation and deposition of polystyrene. Appl Phys A 83(1):147–151CrossRefGoogle Scholar
  8. Bubb DM, Sezer AO, Harris D, Rezae F, Kelty SP (2006b) Steady-state mechanism for polymer ablation by a free-running Er:YAG laser. Appl Surf Sci 253(5):2386–2392CrossRefGoogle Scholar
  9. Burns A, Ow H, Wiesner U (2006a) Fluorescent core-shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chem Soc Rev 35(11):1028–1042CrossRefGoogle Scholar
  10. Burns A, Sengupta P, Zedayko T, Baird B, Wiesner U (2006b) Core/shell fluorescent silica nanopartictes for chemical sensing: towards single-particle laboratories. Small 2(6):723–726CrossRefGoogle Scholar
  11. Chrisey DB, Hubler GK (eds) (1994) Pulsed laser deposition of thin solid films. Wiley, New YorkGoogle Scholar
  12. Dlott DD, Fayer MD (1989) Application of a 2-color free-electron laser to condensed-matter. J Opt Soc Am B 6(5):977–994CrossRefGoogle Scholar
  13. Dygert NL, Schriver KE, Haglund RF Jr (2007) Resonant infrared pulsed laser deposition of a polyimide precursor. IOP Conference Series 59(651–656)Google Scholar
  14. Edwards GS, Evertson D, Gabella W, Grant R, King TL, Kozub J, Mendenhall M, Shen J, Shores R, Storms S, Traeger RH (1996) Free-electron lasers: reliability, performance, and beam delivery. IEEE J Sel Top Quant 2(4):810–817CrossRefGoogle Scholar
  15. Edwards GS, Allen SJ, Haglund RF, Nemanich RJ, Redlich B, Simon JD, Yang WC (2005) Applications of free-electron lasers in the biological and material sciences. Photochem Photobiol 81(4):711–735CrossRefGoogle Scholar
  16. Ermer DR, Papantonakis MR, Baltz-Knorr M, Nakazawa D, Haglund RF (2000) Ablation of dielectric materials during laser irradiation involving strong vibrational coupling. Appl Phys A 70(6):633–635Google Scholar
  17. Fiore A, Berger V, Rosencher E, Bravetti P, Nagle J (1998) Phase matching using an isotropic nonlinear optical material. Nature 391(6666):463–466CrossRefGoogle Scholar
  18. Gamaly EG, Rode AV, Luther-Davies B (1999) Ultrafast ablation with high-pulse-rate lasers. Part I: theoretical considerations. J Appl Phys 85(8):4213–4221CrossRefGoogle Scholar
  19. Haglund RF Jr, Bubb DM, Ermer DR, Horwitz JS, Houser EJ, Hubler GK, Ivanov B, Papantonakis MR, Ringeisen BR, Schriver KE (2003) Resonant infrared laser materials processing at high vibrational excitation density: applications and mechanisms. In: Ostendorf A, Helvajian H, Sugioka K (eds) Laser precision manufacturing, Proc. SPIE, vol 5063Google Scholar
  20. Haidar R, Mustelier A, Kupecek P, Rosencher E, Triboulet R, Lemasson P, Mennerat G (2002) Largely tunable midinfrared (8-12 mu m) difference frequency generation in isotropic semiconductors. J Appl Phys 91(4):2550–2552CrossRefGoogle Scholar
  21. Hardy JG, Chadwick TS (2000) Sustained release drug delivery to the lungs – an option for the future. Clin Pharmacokinet 39(1):1–4CrossRefGoogle Scholar
  22. Innerhofer E, Sudmeyer T, Brunner F, Haring R, Aschwanden A, Paschotta R, Honninger C, Kumkar M, Keller U (2003) 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser. Opt Lett 28(5):367–369CrossRefGoogle Scholar
  23. Innerhofer E, Sudmeyer T, Brunner F, Paschotta R, Keller U (2004) Mode-locked high-power lasers and nonlinear optics a powerful combination. Laser Phys Lett 1(2):82–85CrossRefGoogle Scholar
  24. Jones RAL (2002) Soft condensed matter. Oxford University Press, New YorkGoogle Scholar
  25. Keller U (2003) Recent developments in compact ultrafast lasers. Nature 424(6950):831–838CrossRefGoogle Scholar
  26. Kolev VZ, Duering MW, Luther-Davies B, Rode AV (2006) Compact high-power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials. Opt Express 14(25):12302–12309CrossRefGoogle Scholar
  27. Lipski AM, Jaquiery C, Choi H, Eberli D, Stevens M, Martin I, Chen IW, Shastri VP (2007) Nanoscale engineering of biomaterial surfaces. Adv Mater 19(4):553–557CrossRefGoogle Scholar
  28. Neil GR, Bohn CL, Benson SV, Biallas G, Douglas D, Dylla HF, Evans R, Fugitt J, Grippo A, Gubeli J, Hill R, Jordan K, Krafft GA, Li R, Merminga L, Piot P, Preble J, Shinn M, Siggins T, Walker R, Yunn B (2000) Sustained kilowatt lasing in a free-electron laser with same-cell. Phys Rev Lett 84(22):5238CrossRefGoogle Scholar
  29. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949CrossRefGoogle Scholar
  30. Papantonakis MR, Haglund RF (2004) Picosecond pulsed laser deposition at high vibrational excitation density: the case of poly(tetrafluoroethylene). Appl Phys A 79(7):1687–1694CrossRefGoogle Scholar
  31. Ringeisen BR, Callahan J, Wu PK, Pique A, Spargo B, McGill RA, Bucaro M, Kim H, Bubb DM, Chrisey DB (2001) Novel laser-based deposition of active protein thin films. Langmuir 17(11):3472–3479CrossRefGoogle Scholar
  32. Ringeisen BR, Chrisey DB, Pique A, Young HD, Modi R, Bucaro M, Jones-Meehan J, Spargo BJ (2002) Generation of mesoscopic patterns of viable Escherichia coli by ambient laser transfer. Biomaterials 23(1):161–166CrossRefGoogle Scholar
  33. Rode AV, Luther-Davies B, Gamaly EG (1999) Ultrafast ablation with high-pulse-rate lasers. Part II: experiments on laser deposition of amorphous carbon films. J Appl Phys 85(8):4222–4230CrossRefGoogle Scholar
  34. Schwodiauer R, Bauer-Gogonea S, Bauer S, Heitz J, Arenholz E, Bauerle D (1998) Charge stability of pulsed-laser deposited polytetrafluoroethylene film electrets. Appl Phys Lett 73(20):2941–2943CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Physics and Astronomy and W. M. Keck Foundation Free-Electron Laser CenterVanderbilt UniversityNashvilleUSA

Personalised recommendations