Skip to main content

Abstract

At present it is well accepted that different surface properties play a strong role in the interaction between synthetic materials and biological entities. Surface properties such as surface energy, topography, surface chemistry and crystallinity affect the protein adsorption mechanisms as well as cell behaviour in terms of attachment, proliferation and differentiation. The aim of this chapter is to show the most relevant processes and interactions that take place during the first stages of contact between the material and the physiological environment. Some examples show that the modification of different biomaterials surfaces affects both protein adsorption and cell behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano KP, Daniels AU, Smutz WP, Wyatt RWB, Heller J (1993) Preliminary biocompatibility screening of several biodegradable phosphate fiber reinforced polymers. J Appl Biomater 4:1–12

    Article  Google Scholar 

  • Agrawal CM, Ray RB (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55:141–150

    Article  CAS  Google Scholar 

  • Altankov G, Groth T (1994) Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. J Mater Sci Mater Med 5:732–737

    Article  CAS  Google Scholar 

  • Anderson JM, Gristina AG, Hanson SR, Harker LA, Johnson RJ, Merrit K, Naylor PT, Schoen FJ (1996) Host reactions to biomaterials and their evaluation. In: Ratner BD, Horffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Academic, San Diego, CA, pp 127–146

    Google Scholar 

  • Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21(7):667–681

    Article  CAS  Google Scholar 

  • Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P (2000) Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res 49:155–166

    Article  CAS  Google Scholar 

  • Aparicio C, Gil F, Fonseca C, Barbosa M, Planell JA (2003) Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials 24:263–273

    Article  CAS  Google Scholar 

  • Banwart JC, Asher MA, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 20:1055–1060

    Article  CAS  Google Scholar 

  • Beningo KA, Dembo M, Kaverina I, Small JA, Wang YL (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 153(4):881–887

    Article  CAS  Google Scholar 

  • Black J (2006) Biocompatibility: definitions and issues. In: Black J (ed) Biological performance of materials, 4th edn. Taylor & Francis, Boca Raton, FL, p 6

    Google Scholar 

  • Blawas AS, Reichert WM (1998) Protein patterning. Biomaterials 19(7–9):595–609

    Article  CAS  Google Scholar 

  • Boyan BD, Dean DD, Lohmann CH, Cochran DL, Sylvia VL, Schwartz Z (2001) The titanium-bone cell interface in vitro: the role of the surface in promoting osteointegration. In: Brunette D, Tengvall P, Textor M, Thomsen P (eds) Titanium in medicine. Springer, Berlin, pp 562–585

    Google Scholar 

  • Charest JL, Garcia AJ, King WP (2007) Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries. Biomaterials 28(13):2202–2210

    Article  CAS  Google Scholar 

  • Charles-Harris M, Navarro M, Engel E, Aparicio C, Ginebra MP, Planell JA (2005) Surface characterisation of completely degradable composite scaffolds. J Mater Sci Mater Med 16:1125–1130

    Article  CAS  Google Scholar 

  • Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276(5317):1425–1428

    Article  CAS  Google Scholar 

  • Chesnel KD, Clark CC, Brighton CT, Black J (1995) Cellular responses to chemical and morphologic aspect of biomaterial surfaces 2: the biosynthetic and migratory response of bone cell-populations. J Biomed Mater Res 29:110–1110

    Google Scholar 

  • Chim H, Schantz JT (2006) Human circulating peripheral blood mononuclear cells for calvarial bone tissue engineering. Plast Reconstr Surg 117(2):468–478

    Article  CAS  Google Scholar 

  • Ciccone W, Motz C, Bentley C, Tasto J (2001) Bioabsorbable implants in orthopaedics: new developments and clinical applications. J Am Acad Orthop Surg 9:280–288

    Google Scholar 

  • Colloioud A, Clemence JF, Sanger M, Sigrist H (1993) Oriented and covalent immobilization of target molecules to solid supports: synthesis and application of a light-activatable and thiol-reactive crosslinking reagent. Bioconjugate Chem 4:528–536

    Article  Google Scholar 

  • Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18:1573–1583

    Article  CAS  Google Scholar 

  • Dalby MJ, Giannaras D, Riehle MO, Gadegaard N, Affrossman S, Curtis ASG (2004) Rapid fibroblast adhesion to 27 nm high polymer demixed nano-topography. Biomaterials 25:77–83

    Article  CAS  Google Scholar 

  • Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle M, Herzyk P, Wilkinson C, Oreffo R (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6:997–1003

    Article  CAS  Google Scholar 

  • Dee KC, Puleo DA, Bizios R (2002) Wound healing. In: Dee KC, Puleo DA, Bizios R (eds) An introduction to tissue-biomaterial interactions. Wiley, Hoboken, NJ, pp 165–214

    Chapter  Google Scholar 

  • Diener A, Nebe B, Lüthen F, Becker P, Beck U, Neumann H, Rychly J (2005) Control of focal adhesion dynamics by material surface characteristics. Biomaterials 26(4):383–392

    Article  CAS  Google Scholar 

  • Dunlap CL, Vincent SK, Barker BF (1989) Allergic reaction to orthodontic wire: report of case. JADA 118:449–450

    CAS  Google Scholar 

  • Fernyhough JC, Schimandle JJ, Weigel MC, Edwards CC, Levine AM (1992) Chronic donor site pain complicating bone graft harvest from the posterior iliac crest for spinal fusion. Spine 17:1474–1480

    Article  CAS  Google Scholar 

  • Fuchs JR, Hannouche D, Terada S, Zand S, Vacanti JP, Fauza DO (2005) Cartilage engineering from ovine umbilical cord blood mesenchymal progenitor cells. Stem Cells 23(7):958–964

    Article  CAS  Google Scholar 

  • Gadegaard N (2006) Atomic force microscopy in biology: technology and techniques. Biotech Histochem 81(2–3):87–97

    Article  CAS  Google Scholar 

  • Goulet JA, Senunas LE, DeSilva GL, Greengield MLVH (1997) Autogeneous iliac crest bone graft. Complications and functional assessment. Clin Orthop 339:76–81

    Article  Google Scholar 

  • Grinnel F, Feld MK (1982) Adsorbtion characteristics of plasma fibronectin in relationship to biological-activity. J Biomed Mater Res 15:363–381

    Article  Google Scholar 

  • Grizzi I, Garreau H, Li S, Vert M (1995) Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence. Biomaterials 16(4):305–311

    Article  CAS  Google Scholar 

  • Gronowicz G, McCarthy MB, Ahmad M (1996) Direct integrin-mediated attachment of juman osteoblasts to implants. J Bone Miner Res 11:S323

    Google Scholar 

  • Hardouin P, Anselme K, Flautre B, Bianchi F, Bascoulenguet G, Bouxin B (2000) Tissue engineering and skeletal diseases. Joint Bone Spine 67:419–424

    CAS  Google Scholar 

  • Healy KE, Thomas CH, Rezania A, Kim JE, McKeown PJ, Lom B, Hockberger PE (1996) Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry. Biomaterials 17:195–208

    Article  CAS  Google Scholar 

  • Hench LL (1980) Biomaterials. Science 208:826–831

    Article  CAS  Google Scholar 

  • Hench LL, Anderson Ö (1993) Bioactive glasses. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Hackensack, NJ, p 41

    Chapter  Google Scholar 

  • Hench LL, Polak J (2002) Third generation biomedical materials. Science 295:1014–1017

    Article  CAS  Google Scholar 

  • Howlet CR, Evans MDM, Walsh WR, Johnson G, Steele JG (1994) Mechanism of initial attachment of cells derived from human bone to commonly used prosthetic materials during cell-culture. Biomaterials 15:213–222

    Article  Google Scholar 

  • Huang YC, Huang YY (2006) Biomnaterials and strategies for nerve regeneration. Artif Organs 30(7):514–522

    Article  Google Scholar 

  • Huang HH, Ho CT, Lee TH, Lee TL, Liao KK, Chen FL (2004) Effect of surface roughness of ground titanium on initial cell adhesion. Biomol Eng 21(3–5):93–97

    Article  CAS  Google Scholar 

  • Hunt J (2004) Foreign body response. In: Wnek GE, Bowlin GL (eds) Encyclopedia of biomaterials and biomedical engineering. Marcel Dekker, New York, pp 641–646

    Google Scholar 

  • Hutmacher D, Hürzeler MB, Schliephake H (2000) A review of material properties of biodegradable and bioresorbable polymer for GTR and GBR. J Oral Maxillofac Implants 11:667–678

    Google Scholar 

  • Johansson F, Carlberg P, Danielsen N, Montelius L, Kanje M (2006) Axonal outgrowth on nano-imprinted patterns. Biomaterials 27(8):1251–1258

    Article  CAS  Google Scholar 

  • Kasuga T, Maeda H, Kato K, Nogami M, Hata KI, Ueda M (2003) Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials 24:3247–3253

    Article  CAS  Google Scholar 

  • Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchyal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5): 1294–1301

    Article  CAS  Google Scholar 

  • Kulkarni R, Pani KC, Neuman C, Leonard F (1966) Polylactic acid for surgical implants. Archives Surg 93:839

    Article  CAS  Google Scholar 

  • Kulkarni R, Moore RG, Hegyeli AF, Leonard F (1971) Biodegradable poly(lactic acid) polymers. J Biomed Mater Res 5:169–181

    Article  CAS  Google Scholar 

  • Larsson C, Thomsen P, Aronsson BO, Rodahl M, Lausmaa J, Kasemo B, Ericson LE (1996) Bone response to surface-modified titanium implants: studies on the early tissue response machined and electropolished implants with different oxides thicknesses. Biomaterials 17:605–616

    Article  CAS  Google Scholar 

  • Magel S, Vogler EA, Firment L, Watt T, Haynie S, Sogah DY (1993) Peptide, protein and cellular interactions with self-assembled monolayer model surfaces. J Biomed Mater Res 27(12):1463–1476

    Article  Google Scholar 

  • Martínez E, Ríos-Mondragón I, Pla-Roca M, Rodríguez-Segui S, Engel E, Mills CA, Sisquella X, Planell JA, Samitier J (2007) Cell-surface interactions studies to trigger stem cell differentiation. Nanomedicine 3(4):346–346

    Google Scholar 

  • McFarland CD, Mayer S, Scotchford C, Dalton BA, Steele JG, Downes S (1999) Attachment of cultured human bone cells to novel polymers. J Biomed Mater Res 44(1):1–11

    Article  CAS  Google Scholar 

  • Meyer O, Buchter A, Wiesmann HP, Joos U, Jones DB (2005) Basic reactions of osteoblasts on structured material surfaces. ECMjournal 9:39–49

    CAS  Google Scholar 

  • Michiardi A, Aparicio C, Planell JA, Gil FJ (2004) Nuevo tratamiento de oxidación en aleaciones de NiTi para la disminución de la liberación de iones y la mejora de la biocompatibilidad. Spanish Patent no P2004024004

    Google Scholar 

  • Michiardi A, Aparicio C, Planell JA, Gil FJ (2006) New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility. J Biomed Mater Res 77B:249–456

    Article  CAS  Google Scholar 

  • Michiardi A, Aparicio C, Ratner BD, Planell JA, Gil J (2007) The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces. Biomaterials 28:586–594

    Article  CAS  Google Scholar 

  • Michiardi A, Engel E, Aparicio C, Planell JA, Gil FJ (2008) Oxidized NiTi surfaces enhance differentiation of osteoblast-like cells. J Biomed Mater Res 85A:108–114

    Article  CAS  Google Scholar 

  • Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopaedic devices. Biomaterials 21(23):2335–2346

    Article  CAS  Google Scholar 

  • Mills CA, Martínez R, Errachid A, Engel E, Funes M, Moormann C, Wahlbrink T, Gomila G, Planell JA, Samitier J (2007) Nanoembosed polymer substrates for biomedical surface interaction studies. J Nanosci Nanotechnol 7:4588–4594

    CAS  Google Scholar 

  • Mrksich M, Whitesides GM (1995) Patterning self-assembled monolayers using microcontact printing: a new technology for biosensors? TIBTECH 13:228–235

    Article  CAS  Google Scholar 

  • Navarro M, Ginebra MP, Clement J, Martínez S, Avila G, Planell JA (2003) Physicochemical degradation of titania-stabilized soluble phosphate glasses for medical applications. J Am Ceram Soc 86(8):1345–1352

    Article  CAS  Google Scholar 

  • Navarro M, Ginebra MP, Planell JA, Barrias C, Barbosa M (2005) In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass. Acta Biomater 1:411–419

    Article  CAS  Google Scholar 

  • Navarro M, Engel E, Planell JA, Amaral I, Barbosa M, Ginebra MP (2008) Surface characterisation and cell response of a PLA/CaP glass biodegradable composite material. J Biomed Mater Res 85 A:477–486

    Article  Google Scholar 

  • Peltonen L (1979) Nickel sensitivity in general population. Contact Dermatitis 5:27–32

    Article  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mensenchymal stem cells. Science 284(5411):143–147

    Article  CAS  Google Scholar 

  • Roach P, Eglin D, Rohde K, Perry CC (2007) Modern biomaterials: a review-bulk properties and implications of surface modifications. J Mater Sci Mater Med 18:1263–1277

    Article  CAS  Google Scholar 

  • Rodríguez-Cabello JC, Prieto S, Reguera J, Arias FJ, Riberiro A (2007) Biofunctional design of elastin-like polymers for advanced applications in nanobiotechnology. J Biomater Sci Polym Ed 18(3):269–286

    Article  Google Scholar 

  • Rokkanen P (2000) Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials 21:2607–2613

    Article  CAS  Google Scholar 

  • Scotchford CA, Cooper E, Leggett GJ, Downes S (1998) Growth of human osteoblast-like cells on alkanethiol on gold self-assembled monolayers: the effects of surface chemistry. J Biomed Mater Res 41:431–442

    Article  CAS  Google Scholar 

  • Sergeant TD, Rao MS, Koh CY, Stupp SI (2008) Covalent functionalization on NiTi surfaces with bioactive peptide amphiphile nanofibers. Biomaterials 29(8):1085–1098

    Article  Google Scholar 

  • Siebers MC, Brugge PJ, Wlaboomers XF, Jansen JA (2005) Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials 26(2):137–146

    CAS  Google Scholar 

  • Stoltz JF, Bensoussan D, Decot V, Netter P, Ciree A, Gillet P (2006) Cell and tissue engineering and clinical applications: an overview. Biomed Mater Eng 16(4):S3–S18

    CAS  Google Scholar 

  • Tan J, Saltzman WM (2002) Topographical control of human neutrophil motility on micropatterned materials with various surface chemistry. Biomaterials 23(15):3215–3225

    Article  CAS  Google Scholar 

  • Tang L, Liu L, Elwing HB (1998) Complement activation and inflammation triggered by model biomaterial surfaces. J Biomed Mater Res 41(2):333–340

    Article  CAS  Google Scholar 

  • Teixeira A, Duckworth JK, Hermanson O (2007) Getting the right stuff: controlling neural stem cell state and fate in vivo and in vitro with biomaterials. Cell Res 17(1):56–61

    Article  CAS  Google Scholar 

  • Temenoff JS, Mikos AG (2000) Tissue engineering for regeneration of articular cartilage. Biomaterials 21:431–440

    Article  CAS  Google Scholar 

  • Verfaillie CM (2002) Adult stem cells: assessing the case for pluripontency. Trends Biotechnol 12(11):502–508

    CAS  Google Scholar 

  • Wataha JC, O’Dell NL, Singh BB, Ghazi M, Whitford GM, Lockwood pE (2001) Relating nickel-induced tissue inflammation to nickel release in vivo. J Biomed Mater Res B Appl Biomater 58:537–544

    Article  CAS  Google Scholar 

  • Wilkinson CDW, Riehle M, Wood M, Gallagher J, Curtis ASG (2002) The use of materials patterned on a nano-and micro-metric scale in cellular engineering. Mater Sci Eng C 14:263–269

    Article  Google Scholar 

  • Xiao SJ, Textor M, Spencer ND, Wieland M, Keller B, Sigrist H (1998) Covalent attachment of cell-adhesive peptides containing (arg-gly-asp) sequences to titanium surfaces. Langmuir 14:5507–5516

    Article  CAS  Google Scholar 

  • Xiao SJ, Kenausis G, Textor M (2001) Biochemical modification of titanium surfaces. Springer, Berlin

    Google Scholar 

  • Zinger O, Zhao G, Schwartz Z, Simpson J, Weiland M, Landolt D, Boyan B (2005) Differential regulation of osteoblast by susbstrate microstructural features. Biomaterials 26(14):1837–1347

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep A. Planell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Planell, J.A. et al. (2010). Materials Surface Effects on Biological Interactions. In: Shastri, V., Altankov, G., Lendlein, A. (eds) Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8790-4_12

Download citation

Publish with us

Policies and ethics