Advertisement

Role of Spatial Distribution of Matricellular Cues in Controlling Cell Functions

  • Daniela Guarnieri
  • Paolo A. NettiEmail author
Conference paper
  • 913 Downloads
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

The extracellular matrix (ECM) represents the quintessential material for tissue engineering (TE) applications, because it provides a structural support and regulates tissue development. Therefore, the main challenge in TE is to recreate ECM analogues that recapitulate the structural and molecular microenvironment to promote and guide tissue growth. Apart from composition, the distribution and presentation of molecular cues within the matrix are pivotal in controlling morphogenetic process. However, the role of matricellular signal presentation in terms of spatial and temporal orchestration is still poorly understood. This article overviews the development of systems able to control the spatial and temporal exposure of matricellular cues to the aim of guide cell response for tissue engineering applications.

Keywords

Bioactive scaffold Signals presentation Cell guidance 

References

  1. Aarão Reis FDA (1996) Diffusion on regular random fractals. J Phys A-Math Gen 29:7803–7810CrossRefGoogle Scholar
  2. Atala A (2007 March–April) Engineering tissues, organs and cells. J Tissue Eng Regen Med 1(2):83–96CrossRefGoogle Scholar
  3. Balakrishnan V (1995) Random walk on fractals. Mat Sci Eng B-Solid 32:201–210CrossRefGoogle Scholar
  4. Battista S, Guarnieri D, Borselli C, Zeppetelli S, Borzacchiello A, Mayol L, Gerbasio D, Keene DR, Ambrosio L, Netti PA (2005) The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials 2631:6194CrossRefGoogle Scholar
  5. Beningo KA, Dembo M, Wang YL (2004) Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. Proc Natl Acad Sci USA 101(52):18024–18029CrossRefGoogle Scholar
  6. Biondi M, Ungaro F, Quaglia F, Netti PA (2008) Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 60:229–242CrossRefGoogle Scholar
  7. Birk DE (2001) Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron 32:223CrossRefGoogle Scholar
  8. Borselli C, Battista S, Netti PA (2007a) Mind the matrix: role of scaffold in controlling cell function. In: New research on biomaterials. Nova Science Publishers, Hauppauge NY, USA, pp 181–195Google Scholar
  9. Borselli C, Oliviero O, Battista S, Ambrosio L, Netti PA (2007b) Induction of directional sprouting angiogenesis by matrix gradients. J Biomed Mater Res A 80(2):297–305Google Scholar
  10. Bourgoin D, Turgeon S, Ross GG (1999) Characterization of hydrogenated amorphous carbon films produced by plasma-enhanced chemical vapour deposition with various chemical hybridization. Thin Solid Films 357:2CrossRefGoogle Scholar
  11. Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466CrossRefGoogle Scholar
  12. Burridge K, Chrzanowska-Wodnicka M (1996) Focal adhesions, contractility, and signalling. Annu Rev Cell Dev Biol 12:463–518. ReviewCrossRefGoogle Scholar
  13. Buzzoni G, Hemler ME (1998) Are changes in integrin affinity and conformation overemphasized? Trends Biochem Sci 23(1):30–34. ReviewCrossRefGoogle Scholar
  14. Chen G, Ito Y (2001) Gradient micropattern immobilization of EGF to investigate the effect of artificial juxtacrine stimulation. Biomaterials 22:2453–2457CrossRefGoogle Scholar
  15. Chen RR, Mooney DJ (2003) Polymeric growth factor delivery strategies for tissue engineering. Pharm Res 20:1103–1112CrossRefGoogle Scholar
  16. Chen RR, Silva EA, Yuen WW, Mooney DJ (2007) Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 24:258–264CrossRefGoogle Scholar
  17. Clark RAF (1988) Wound repair: overview and general considerations. In: Clark RAF (ed) The molecular and cellular biology of wound repair. Plenum, New York, pp 3–35CrossRefGoogle Scholar
  18. Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712CrossRefGoogle Scholar
  19. Curtis ASG, Casey B, Gallagher JO, Pasqui D, Wood MA, Wilkinson CDW (2001) Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important? Biophys Chem 94:275–283CrossRefGoogle Scholar
  20. Dalby MJ, Riehle MO, Johnstone HJ, Affrossman S, Curtis AS (2002 December) Polymer-demixed nanotopography: control of fibroblast spreading and proliferation. Tissue Eng 8(6):1099–1108CrossRefGoogle Scholar
  21. DeLong SA, Gobin AS, West JL (2005a) Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration. J Control Release 109:139–148bCrossRefGoogle Scholar
  22. DeLong SA, Moon JJ, West JL (2005b) Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 26(16):3227–3234aCrossRefGoogle Scholar
  23. DeMali KA, Barlow CA, Burridge K (2002) Recruitment of the Arp2/3 complex to vinculin: coupling membrane protusion to matrix adhesion. J Cell Biol 159:881–891CrossRefGoogle Scholar
  24. DiMilla PA, Barbee K, Lauffenburger DA (1991 July) Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys J 60(1):15–37CrossRefGoogle Scholar
  25. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143CrossRefGoogle Scholar
  26. Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18(1):4–25CrossRefGoogle Scholar
  27. Fittkau MH, Zilla P, Bezuidenhout D, Lutolf MP, Human P, Hubbell JA, Davies N (2005) The selective modulation of endothelial cell mobility on RGD peptide containing surfaces by YIGSR peptides. Biomaterials 26(2):167–174CrossRefGoogle Scholar
  28. Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF (1999) Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 20:573–588CrossRefGoogle Scholar
  29. Folkman J (1982) Angiogenesis: initiation and control. Ann N Y Acad Sci 401:212–227CrossRefGoogle Scholar
  30. Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I (1988) A heparin-binding angiogenic protein–basic fibroblast growth factor is stored within basement membrane. Am J Pathol 130:393–400Google Scholar
  31. Friedl P, Brocker EB (2000) The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci 57(1):41–64CrossRefGoogle Scholar
  32. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3(5):362–374CrossRefGoogle Scholar
  33. Giancotti FG, Ruoslahti E (1999 August 13) Integrin signaling. Science 285(5430):1028–1032. ReviewCrossRefGoogle Scholar
  34. Gobin AS, West JL (2002 May) Cell migration through defined, synthetic ECM analogs. FASEB J 16(7):751–753. Epub March 26Google Scholar
  35. Goldberg M, Langer R, Jia X (2007) Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 18:241–268CrossRefGoogle Scholar
  36. Guarnieri D, Battista S, Borzacchiello A, Mayol L, De Rosa E, Keene DR, Muscariello L, Barbarisi A, Netti PA (2007 February) Effects of fibronectin and laminin on structural, mechanical and transport properties of 3D collageneous network. J Mater Sci Mater Med 18(2):245–253CrossRefGoogle Scholar
  37. Hay ED (ed) (1991) Cell biology of extracellular matrix. Plenum, New YorkGoogle Scholar
  38. Hsu S, Jamieson AM, Blackwell J (1994) Viscoelastic studies of extracellularmatrix interactions in a model native collagen gel system. Biorheology 31:21–36Google Scholar
  39. Humphries MJ, Newham P (1998) The structure of cell-adhesion molecules. Trends Cell Biol 8(2):78–83. ReviewCrossRefGoogle Scholar
  40. Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J Biomater Sci Polym Ed 12:107–124CrossRefGoogle Scholar
  41. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362CrossRefGoogle Scholar
  42. Hynes RO (1990) Fibronectins, 1st edn. Springer, New York, p 546CrossRefGoogle Scholar
  43. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25CrossRefGoogle Scholar
  44. Ingber DE (2006) Mechanical control of tissue morphogenesis during embryological development. Int J Dev Biol 50:255–266CrossRefGoogle Scholar
  45. Irvine DJ, Hue KA, Mayes AM, Griffith LG (2002 January) Simulations of cell-surface integrin binding to nanoscale-clustered adhesion ligands. Biophys J 82(1 Pt 1):120–132CrossRefGoogle Scholar
  46. Ito Y, Hayashi M, Imanish Y (2001) Gradient micropattern immobilization of heparin and its interaction with cells. J Biomater Sci Polym Ed 12:367–378CrossRefGoogle Scholar
  47. Jiang B, Liou GI, Behzadian MA, Calwell RB (1994) Astrocytes modulate retinal vasculogenesis: effects on fibronectin expression. J Cell Sci 107:2499–2508Google Scholar
  48. Karp JM, Langer R (2007 October) Development and therapeutic applications of advanced biomaterials. Curr Opin Biotechnol 18(5):454–459. Epub 2007 Nov 5. ReviewCrossRefGoogle Scholar
  49. Knapp DM, Helou EF, Tranquillo RT (1999) A fibrin or collagen gel assay for tissue cell chemotaxis: assessment of fibroblast chemotaxis to RGDSP. Exp Cell Res 247:543–553CrossRefGoogle Scholar
  50. Koo LY, Irvine DJ, Mayes AM, Lauffenburger DA, Griffith LG (2002 April 1) Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J Cell Sci 115(Pt 7):1423–1433Google Scholar
  51. Kurz H, Burri PH, Djonov VG (2003) Angiogenesis and vascular remodeling by intussusception: from form to function. News Physiol Sci 18:65–70Google Scholar
  52. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359–369CrossRefGoogle Scholar
  53. Lauffenburger DA, Linderman JJ (1993) Receptors: models for binding. Trafficking and signaling. Oxford University Press, New YorkGoogle Scholar
  54. Laukaitis CM, Webb DJ, Donais K, Horwitz AF (2001) Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells. J Cell Biol 153:1427–1440CrossRefGoogle Scholar
  55. Lavik E, Langer R (2004) Tissue engineering: current state and perspectives. Appl Microbiol Biotechnol 65:1–8CrossRefGoogle Scholar
  56. Li S, Guan JL, Chien S (2005) Biochemistry and biomechanics of cell motility. Annu Rev Biomed Eng 7:105–150CrossRefGoogle Scholar
  57. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152CrossRefGoogle Scholar
  58. Lu Y, Shansky J, Del TM, Ferland P, Wang X, Vandenburgh H (2001) Recombinant vascular endothelial growth factor secreted from tissueengineered bioartificial muscles promotes localized angiogenesis. Circulation 104:594–599CrossRefGoogle Scholar
  59. Lutolf MP, Hubbell JA (2003 May–June) Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 4(3):713–722CrossRefGoogle Scholar
  60. Maheshwari G, Lauffenburger DA (1998) Deconstructing (and reconstructing) cell migration. Microsc Res Tech 43(5):358–368CrossRefGoogle Scholar
  61. Maheshwari G, Brown G, Lauffenburger DA, Wells A, Griffith L (2000 May) Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci 113(Pt 10):1677–1686Google Scholar
  62. Makowski L, Magdoff-Fairchild B (1986) Polymorphism of sickle cell hemoglobin aggregates: structural basis for limited radial growth. Science 234:1228CrossRefGoogle Scholar
  63. Massia SP, Hubbell JA (1990 June) Covalent surface immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtain well-defined cell-adhesive substrates. Anal Biochem 187(2):292–301CrossRefGoogle Scholar
  64. Massia SP, Hubbell JA (1991) An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3 mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J Cell Biol 114(5):1089–1100CrossRefGoogle Scholar
  65. Massia SP, Rao SS, Hubbell JA (1993) Covalently immobilized laminin peptide Tyr-Ile-Gly-Ser-Arg (YIGSR) supports cell spreading and co-localization of the 67-kilodalton laminin receptor with alfa-actinin and vinculin. J Biol Chem 268(11):8053–8059Google Scholar
  66. Matsumoto T, Mooney DJ (2006) Cell instructive polymers. Adv Biochem Eng Biotechnol 102(113–37):113–137Google Scholar
  67. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77CrossRefGoogle Scholar
  68. Mikos AG, Herring SW, Ochareon P, Elisseeff J, Lu HH, Kandel R, Schoen FJ, Toner M, Mooney D, Atala A, Van Dyke ME, Kaplan D, Vunjak-Novakovic G (2006) Engineering complex tissues. Tissue Eng 12:3307–3339CrossRefGoogle Scholar
  69. Moghe PV, Nelson RD, Tranquillo RT (1995) Cytokine-stimulated chemotaxis of human neutrophils in a 3-D conjoined fibrin gel assay. J Immunol Methods 180:193–211CrossRefGoogle Scholar
  70. Mosesson MW, Siebenlist KR, Meh DA (2001) The structure and biological features of fibrinogen and fibrin. Ann N Y Acad Sci 936:11–30CrossRefGoogle Scholar
  71. Mrksich M (2000) A surface chemistry approach to studying cell adhesion. Chem Soc Rev 29:267–273CrossRefGoogle Scholar
  72. Mrksich M, Chen CS, Xia Y, Dike LE, Ingber DE, Whitesides GM (1996) Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proc Natl Acad Sci USA 93(20):10775–10778CrossRefGoogle Scholar
  73. Mrksich M, Dike LE, Tien J, Ingber DE, Whitesides GM (1997) Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp Cell Res 235(2):305–313CrossRefGoogle Scholar
  74. Nagai Y, Unsworth LD, Koutsopoulos S, Zhang S (2006 September 28) Slow release of molecules in self-assembling peptide nanofiber scaffold. J Control Release 115(1):18–25. Epub 2006 JulyCrossRefGoogle Scholar
  75. Nelson RD, Quie PG, Simmons RL (1975) Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leucocytes and monocytes. J Immunol 115:1650–1656Google Scholar
  76. Niklason LE, Langer R (2001) Prospects for organ and tissue replacement. JAMA 285:573–576CrossRefGoogle Scholar
  77. Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF (1997) Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385(6616):537–540CrossRefGoogle Scholar
  78. Panyam J, Zhou W-Z, Prabha S, Sahoo SK, Labhasetwar V (2002) Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implication for drug and gene delivery. FASEB J 16:1217–1226CrossRefGoogle Scholar
  79. Pennacchi M, Armentano I, Zeppetelli S, Lanzaro L, Kenny JM, Netti PA (2004) Effects of material surface nanopatterning on cell morphology and orientation. In: Advances in micro and nanoengineering. Editura Academiei Romane, Bucarest, Romania, pp 9–22Google Scholar
  80. Raeber GP, Lutolf MP, Hubbell JA (2005) Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys J 89(2):1374–1388CrossRefGoogle Scholar
  81. Rapraeger AC (2000) Syndecan-regulated receptor signaling. J Cell Biol 149:995–998CrossRefGoogle Scholar
  82. Raucher D, Sheetz MP (2000) Cell spreading and lamellipodial extension rate is regulated by membrane tension. J Cell Biol 148(1):127–136CrossRefGoogle Scholar
  83. Rhoads DS, Guan JL (2007 November 1) Analysis of directional cell migration on defined FN gradients: role of intracellular signalling molecules. Exp Cell Res 313(18):3859–3867. EpubCrossRefGoogle Scholar
  84. Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19(11):1029–1034CrossRefGoogle Scholar
  85. Rogers JA, Chen CS, Xia Y, Dike LE, Ingber DE, Whitesides GM (2000) Printing, molding, and near-field photolithographic methods for patterning organic lasers, smart pixels and simple circuits. Synthetic Met 115:1–3CrossRefGoogle Scholar
  86. Rottner K, Hall A, Small JV (1999) Interplay between Rac and Rho in the control of the substrate contact dynamics. Curr Biol 9:640–648CrossRefGoogle Scholar
  87. Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16:2684–2698CrossRefGoogle Scholar
  88. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715CrossRefGoogle Scholar
  89. Sage EH, Vernon RB (1994) Regulation of angiogenesis by extracellular matrix: the growth and the glue. J Hypertens Suppl 12(10):S145–S152Google Scholar
  90. Savarino L, Baldini N, Greco M, Capitani O, Pinna S, Valentini S, Lombardo B, Esposito MT, Pastore L, Ambrosio L, Battista S, Causa F, Zeppetelli S, Guarino V, Netti PA (2007) The performance of poly-epsiloncaprolacton scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4. Biomaterials 28:3101–3109CrossRefGoogle Scholar
  91. Schoenwaelder SM, Burridge K (1999) Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol 11(2):274–286. ReviewCrossRefGoogle Scholar
  92. Schwartz MA, Schaller MD, Gisberg MH (1995) Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol 11:549–599CrossRefGoogle Scholar
  93. Shen H, Tan J, Saltzman WM (2004) Surface-mediated gene transfer from nanocomposites of controlled texture. Nat Mater Des 3:569–574CrossRefGoogle Scholar
  94. Singhvi R, Kumar A, Lopez GP, Stephanopoulous GN, Wang DI, Whitesides GM, Ingber DE (1994) Engineering cell shape and function. Science 264:696–698CrossRefGoogle Scholar
  95. Stupack DG, Cheresh DA (2002) ECM remodeling regulates angiogenesis: endothelial integrins look for new ligands. Sci STKE 119:PE7Google Scholar
  96. Suciati T, Howard D, Barry J, Everitt NM, Shakesheff KM, Rose FR (2006) Zonal release of proteins within tissue engineering scaffolds. J Mater Sci Mater Med 17:1049–1056CrossRefGoogle Scholar
  97. Sun W, Darling A, Starly B, Nam J (2004) Computer-aided tissue engineering: overview, scope and challenges. Biotechnol Appl Biochem 39:29–47CrossRefGoogle Scholar
  98. Swartz MA (2003) Signaling in morphogenesis: transport cues in morphogenesis. Curr Opin Biotechnol 14:547–550CrossRefGoogle Scholar
  99. Tabata Y (2005) Significance of release technology in tissue engineering. Drug Discov Today 10:1639–1646CrossRefGoogle Scholar
  100. Tranquillo RT (1991 July) Chemotactic movement of single cells. ASGSB Bull 4(2):75–85. ReviewGoogle Scholar
  101. Ungaro F, Biondi M, d’Angelo I, Indolfi L, Quaglia F, Netti PA, La Rotonda MI (2006) Microsphere-integrated collagen scaffolds for tissue engineering: effect of microsphere formulation and scaffold properties on protein release kinetics. J Control Release 113:128–136CrossRefGoogle Scholar
  102. Van der Fuler A, Sonnenberg A (2001) Function and interactions of integrins. Cell Tissue Res 305:285–298CrossRefGoogle Scholar
  103. Van Hinsbergh VW, Collen A, Koolwijk P (2001) Role of the fibrin matrix in angiogenesis. Ann N Y Acad Sci 936:426–437CrossRefGoogle Scholar
  104. Weisel JW, Nagaswami C, Makowski L (1987) Twisting of fibrin fibers limits their radial growth. Proc Natl Acad Sci USA 84:8991CrossRefGoogle Scholar
  105. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373CrossRefGoogle Scholar
  106. Wijelath ES, Murray J, Rahman S, Patel Y, Ishida A, Strand K, Aziz S, Cardona C, Hammond WP, Savidge GF, Rafii S, Sobel M (2002) Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. Circ Res 91(1):25–31CrossRefGoogle Scholar
  107. Wilkinson CDW, Riehle M, Wood M, Gallagher J, Curtis ASG (2002) The use of materials patterned on a nano- and micro-metric scale in cellular engineering. Mat Sci Eng C 19:1–2CrossRefGoogle Scholar
  108. Yamada KM, Pankov R, Cukierman E (2003) Dimensions and dynamics in integrin function. Braz J Med Biol Res 36:959–966CrossRefGoogle Scholar
  109. Zaari N, Rajagopalan P, Kim SK, Engler AJ, Wong JY (2004) Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv Mater 16(23–24):2133–2137CrossRefGoogle Scholar
  110. Zamir E, Geiger B (2001) Components of cell-matrix adhesions. J Cell Sci 114:3577–3579Google Scholar
  111. Zhu B, Eurell T, Gunawan R, Leckband D (2001 September 5) Chain-length dependence of the protein and cell resistance of oligo(ethylene glycol)-terminated self-assembled monolayers on gold. J Biomed Mater Res 56(3):406–416CrossRefGoogle Scholar
  112. Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, Schmokel H, Bezuidenhout D, Djonov V, Zilla P, Hubbell JA (2003) Cell demanded release of VEGF from synthetic, biointeractive cell-ingrowth matrices for vascularized tissue growth. FASEB J 17(15):2260–2262Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Materials and Production EngineeringUniversity of Naples “Federico II”NaplesItaly
  2. 2.Interdisciplinary Research Centre on Biomaterials (CRIB)University of Naples “Federico II”NaplesItaly

Personalised recommendations