Beyond Basic Logics and Standard Systems

  • Andrzej IndrzejczakEmail author
Part of the Trends in Logic book series (TREN, volume 30)


This Chapter has a transitional character. We consider several ways of extending standard approach presented in the last Chapter and point out their limitations. Section 7.1. is devoted to an application of standard approach in ND to other modal logics. We discuss them in order of complications they introduce into the structure of ND.


Modal Logic Temporal Logic Deductive System Normal Logic Hybrid Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [135]
    Hughes, G.E., and M.J. Cresswell. 1968. Introduction to modal logic. London: Methuen.Google Scholar
  2. [134]
    Horrocks, I., U. Satler, and S. Tobies. 2000. Practical reasoning for very expressive description logics. Logic Journal of the IGPL 8(3): 239–263.CrossRefGoogle Scholar
  3. [80]
    Došen K. 1985. Sequent-systems for modal logic. Journal of Symbolic Logic 50: 149–159.CrossRefGoogle Scholar
  4. [288]
    Zeman, J.J. 1973. Modal logic. Oxford: Oxford University Press.Google Scholar
  5. [282]
    Wisdome, W.A. 1964. Possibility elimination in natural deduction. Notre Dame Journal of Formal Logic 5: 295–298.CrossRefGoogle Scholar
  6. [122]
    Hawthorn, J. 1990. Natural deduction in normal modal logic. Notre Dame Journal of Formal Logic 31: 263–273.CrossRefGoogle Scholar
  7. [229]
    Rautenberg, W. 1983. Modal tableau calculi and interpolation. Journal of Philosophical Logic 12: 403–423.CrossRefGoogle Scholar
  8. [117]
    Goré, R. 1999. Tableau methods for modal and temporal logics. In Handbook of tableau methods, eds. M. D’Agostino et al., 297–396. Dordrecht: Kluwer Academic Publishers.Google Scholar
  9. [93]
    Fitting, M. 1983. Proof methods for modal and intuitionistic logics. Dordrecht; Rei-del.Google Scholar
  10. [116]
    Goré, R. 1992. Cut-free sequent and tableau systems for propositional normal modal logics, PhD thesis, University of Cambridge.Google Scholar
  11. [253]
    Shvarts, G.F. 1989. Gentzen style systems for K45 and K45D. Logic at Botic ’89, 245–256. Berlin: Springer.Google Scholar
  12. [28]
    Beth, E.W. 1959. The foundations of mathematics. Amsterdam: North Holland.Google Scholar
  13. [142]
    Indrzejczak, A. 1996. Cut-free sequent calculus for S5. Bulletin of the Section of Logic 25(2): 95–102.Google Scholar
  14. [214]
    Poggiolesi, F. 2008. Sequent calculi for modal logics, Ph.D Thesis, Florence.Google Scholar
  15. [133]
    Horrocks, I. 1997. Optimising tableaux decision procedures for description logics, PhD Thesis, University of Manchester.Google Scholar
  16. [161]
    Kashima, R. 1994. Cut-free sequent calculi for some tense logics. Studia Logica 53: 119–135.CrossRefGoogle Scholar
  17. [231]
    Rescher, N., and A. Urquhart. 1971. Temporal logic. New York: Springer-Verlag.Google Scholar
  18. [50]
    Boolos, G. 1979. The unprovability of consistency. Cambridge: Cambridge University Press.Google Scholar
  19. [152]
    Indrzejczak, A. 2005. Sequent calculi for monotonic modal logics. Bulletin of the Section of logic 34(3): 151–164.Google Scholar
  20. [280]
    Wansing, H. 1998. Displaying modal logics. Dordrecht: Kluwer Academic Publishers.Google Scholar
  21. [105]
    Garson, J.W. 2006. Modal logic for philosophers. Cambridge: Cambridge University Press.Google Scholar
  22. [140]
    Indrzejczak, A. 1994. Natural deduction system for tense logics. Bulletin of the Section of Logic 23(4): 173–179.Google Scholar
  23. [269]
    Takano, M. 1992. Subformula property as a substitute for cut-elimination in modal propositional logics. Mathematica Japonica 37(6): 1129–1145.Google Scholar
  24. [130]
    Heuerding, A., M. Seyfried, and H. Zimmermann. 1996. Efficient loop-check for backward proof search in some non-classical propositional logics. In Tableaux 96, LNCS 1071, eds. P. Miglioli et al., 210–225. Berlin: Springer.Google Scholar
  25. [238]
    Sambin, G., and S. Valentini. 1980. A modal sequent calculus for a fragment of arithmetic. Studia Logica 39: 245–256.CrossRefGoogle Scholar
  26. [240]
    Sato, M. 1977. A study of Kripke-type models for some modal logics by Gentzen’s sequential method. Publications of the Research Institute for Mathematical Sciences, Kyoto University 13: 381–468.CrossRefGoogle Scholar
  27. [94]
    Fitting, M. 1990. Destructive modal resolution. Journal of Logic and Computation 1(1): 83–97.CrossRefGoogle Scholar
  28. [195]
    Nishimura, H. 1980. A study of some tense logics by Gentzen’s sequential method. Publications of the Research Institute for Mathematical Sciences, Kyoto University 16: 343–353.CrossRefGoogle Scholar
  29. [239]
    Sambin, G., and S. Valentini. 1982. The modal logic of provability. The sequential approach. Journal of Philosophical Logic 11: 311–342.CrossRefGoogle Scholar
  30. [143]
    Indrzejczak, A. 1997. Generalised sequent calculus for propositional modal logics. Logica Trianguli 1: 15–31.Google Scholar
  31. [123]
    Hazen, A. 1990. Actuality and quantification. Notre Dame Journal of Formal Logic 31: 498–508.CrossRefGoogle Scholar
  32. [270]
    Takano, M. 2001. A modified subformula property for the modal logics K5 and K5D. Bulletin of the Section of Logic 30(2): 115–123.Google Scholar
  33. [197]
    Ohnishi, M., and K. Matsumoto. 1957. Gentzen method in modal calculi I. Osaka Mathematical Journal 9: 113–130Google Scholar
  34. [252]
    Shimura, T. 1991. Cut-free systems for the modal logic S4.3 and S4.3GRZ. Reports on Mathematical Logic 25: 57–73.Google Scholar
  35. [281]
    Wansing, H. 2002. Sequent systems for modal logics. In Handbook of philosophical logic, eds. D. Gabbay, and F. Guenthner, vol IV, 89–133. Dordrecht: Reidel Publishing Company.Google Scholar
  36. [169]
    Kripke, S. 1959. A completeness theorem in modal logic. Journal of Symbolic Logic 24: 1–14.CrossRefGoogle Scholar
  37. [170]
    Kripke, S. 1963. Semantical analysis of modal logic I. Zeitschrift f˙ur Mathematische Logik und Grundlegen der Mathematik 9: 67–96.Google Scholar
  38. [264]
    Stouppa, P. 2004. The design of modal proof theories: The case of S5, Master Thesis, Dresden.Google Scholar
  39. [265]
    Stouppa, P. A deep inference system for the modal logic S5. Appear in Studia Logica.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Dept. LogicUniversity of LódzLódzPoland

Personalised recommendations