Skip to main content

Standard Approach to Basic Modal Logics

  • Chapter
  • First Online:
Natural Deduction, Hybrid Systems and Modal Logics

Part of the book series: Trends in Logic ((TREN,volume 30))

  • 1025 Accesses

Abstract

In this Chapter we focus on the class of non-axiomatic systems that are called standard in the sense of keeping intact all the machinery of suitable systems for classical logic. Extensions are obtained by means of additional modal rules. This group covers modal extensions of standard Gentzen SC, Hintikka-style modal TS, and some ND systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact Zeman’s work contains formalizations of the whole Lewis’ family S1S5.

  2. 2.

    We mean the family of TS’s called implicit by Goré [117].

  3. 3.

    In fact, also a system of destructive resolution of [94] may be included in this group – it will be introduced later in Chapter 7 (Section 7.4.2).

  4. 4.

    Corcoran in fact applied horizontal, instead of vertical, manner of displaying derivations, but this is only a slight departure of no real importance.

  5. 5.

    In fact, Fitch did not realize that he formalized T; he claimed that his rules gives “almost S2”.

  6. 6.

    We mean soundness profs which are based on the transformation of every formula into a sequent containing this formula in the succedent and the record of active assumptions in the antecedent – cf. introductory remarks in Section 2.6.

  7. 7.

    It is in fact a rule which preserves normality even in monotonic logics – cf. the next section.

  8. 8.

    Small differences concern the rule of \(\forall \) introduction which is an inference rule in [104,105] but proof construction rule in KMGP, the formulation of rules for free logic, and the fact that Garson does not apply KM apparatus of show-lines and boxes but Fitch’s bars. Also Garson defines modal reiteration only for K and add axioms for extensions.

Reference

  1. Thomason, R.H. 1970. A Fitch-style formulation of conditional logic. Logique et Analyse 13: 397–412.

    Google Scholar 

  2. Kripke, S. 1959. A completeness theorem in modal logic. Journal of Symbolic Logic 24: 1–14.

    Article  Google Scholar 

  3. Zeman, J.J. 1973. Modal logic. Oxford: Oxford University Press.

    Google Scholar 

  4. Borkowski, L., and J. Słupecki. 1958. A logical system based on rules and its applications in teaching mathematical logic. Studia Logica 7: 71–113.

    Article  Google Scholar 

  5. Hawthorn, J. 1990. Natural deduction in normal modal logic. Notre Dame Journal of Formal Logic 31: 263–273.

    Article  Google Scholar 

  6. Rautenberg, W. 1983. Modal tableau calculi and interpolation. Journal of Philosophical Logic 12: 403–423.

    Article  Google Scholar 

  7. Goré, R. 1999. Tableau methods for modal and temporal logics. In Handbook of tableau methods, eds. M. D’Agostino et al., 297–396. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  8. Fitting, M. 1983. Proof methods for modal and intuitionistic logics. Dordrecht; Rei-del.

    Google Scholar 

  9. Indrzejczak, A. 1995. Dedukcja naturalna w logikach modalnych pierwszego rzȩdu. In Filozofia/Logika: Filozofia logiczna 1994, eds. J. Perzanowski, A. Pietruszczak, and C. Gorzka, 289–302, Wyd. Toruń: Uniwersytetu Mikołaja Kopernika.

    Google Scholar 

  10. Curry, H.B. 1950. A theory of formal deducibility. Notre Dame: University of Notre Dame Press.

    Google Scholar 

  11. Shvarts, G.F. 1989. Gentzen style systems for K45 and K45D. Logic at Botic ’89, 245–256. Berlin: Springer.

    Google Scholar 

  12. Anderson, A., and N.D. Belnap, Jr. 1975. Entailment: The logic of relewance and necessity, vol I. Princeton: Princeton University Press.

    Google Scholar 

  13. Hughes, G.E., and M.J. Cresswell. 1996. A new introduction to modal logic. London: Routledge.

    Google Scholar 

  14. Siemens, D.F. 1977. Fitch-style rules for many modal logics. Notre Dame Journal of Formal Logic 18: 631–636.

    Article  Google Scholar 

  15. Cerrato, C. 1994. Natural deduction based upon strict implication for normal modal logics. Notre Dame Journal of Formal Logic 35(4): 471–495.

    Article  Google Scholar 

  16. Martins, A.T., and L.R. Martins. 2008. Full classical S5 in natural deduction with weak normalization. Annals of Pure and Applied Logic 152: 132–147.

    Article  Google Scholar 

  17. Prawitz, D. 1965. Natural deduction. Stockholm: Almqvist and Wiksell.

    Google Scholar 

  18. Bull, R., and K. Segerberg. 1984. Basic modal logic. In Handbook of Philosophical Logic, eds. D. Gabbay, and F. Guenthner, vol II, 1–88. Dordrecht: Reidel Publishing Company.

    Google Scholar 

  19. Satre T.W. 1972. Natural deduction rules for modal logics. Notre Dame Journal of Formal Logic 13: 461–475.

    Article  Google Scholar 

  20. Feys, R. 1950. Les systemes formalises des modalites. Revue philosophicue de Louvain 48: 478–509.

    Article  Google Scholar 

  21. Andou, Y. A note on modal logic S4 in natural deduction. Available on www.hosei.ac.jp/museum/html/kiyo/58/articles/Andou.pdf

  22. Lemmon, E.J. 1957. New foundations for Lewis modal systems. Journal of Symbolic Logic 22: 176–186.

    Article  Google Scholar 

  23. Garson, J.W. 2006. Modal logic for philosophers. Cambridge: Cambridge University Press.

    Google Scholar 

  24. Fitch, F. 1952. Symbolic logic. New York: Ronald Press Co.

    Google Scholar 

  25. Ridder, J. 1955. Die Gentzenschen Schlussverfahre in Modalen Aussagenlogiken. Indagationes Mathematicae 17: 163–276.

    Google Scholar 

  26. Indrzejczak, A. 1994. Natural deduction system for tense logics. Bulletin of the Section of Logic 23(4): 173–179.

    Google Scholar 

  27. Hintikka, J. 1957. Quantifiers in deontic logic. Societas Scientiarum Fennica, Commentationes Humanarum Literarum XXIII.

    Google Scholar 

  28. Sieg W., and S. Cittadini. 2005. Normal natural deduction proofs (in nonclassical logics). In Mechanizing mathematical reasoning, LNAI 2605, eds. D. Hutter, and W. Stephan, 169–191. Springer-Verlag.

    Google Scholar 

  29. Lavendhomme, R., and T. Lucas. 2000. Sequent calculi and decision procedures for weak modal systems. Studia Logica 65: 121–145.

    Article  Google Scholar 

  30. Takano, M. 1992. Subformula property as a substitute for cut-elimination in modal propositional logics. Mathematica Japonica 37(6): 1129–1145.

    Google Scholar 

  31. Plato von, J. 2005. Normal derivability in modal logic. Mathematical Logic Quaterly 54(6): 632–638.

    Article  Google Scholar 

  32. Fitch, F. 1966. Natural deduction rules for obligation. American Philosophical Quaterly 3:27–38.

    Google Scholar 

  33. Fitting, M. 1990. Destructive modal resolution. Journal of Logic and Computation 1(1): 83–97.

    Article  Google Scholar 

  34. Kanger, S. 1957. Provability in Logic, Stockholm: Almqvist & Wiksell.

    Google Scholar 

  35. Kripke, S. 1963. Semantical analysis of modal logic I. Zeitschrift fur Mathematische Logik und Grundlegen der Mathematik 9: 67–96.

    Article  Google Scholar 

  36. Takano, M. 2001. A modified subformula property for the modal logics K5 and K5D. Bulletin of the Section of Logic 30(2): 115–123.

    Google Scholar 

  37. Medeiros, M., and Da Paz N. 2006. A new S4 classical modal logic in natural deduction. Journal of Symbolic Logic 71(3): 799–809.

    Article  Google Scholar 

  38. Curry, H.B. 1952. The elimination theorem when modality is present. Journal of Symbolic Logic 17: 249–265.

    Article  Google Scholar 

  39. Ohnishi, M., and K. Matsumoto. 1957. Gentzen method in modal calculi I. Osaka Mathematical Journal 9: 113–130.

    Google Scholar 

  40. Ohnishi, M., and K. Matsumoto. 1959. Gentzen method in modal calculi II. Osaka Mathematical Journal 11: 115–120.

    Google Scholar 

  41. Indrzejczak, A. 2005. Sequent calculi for monotonic modal logics. Bulletin of the Section of logic 34(3): 151–164.

    Google Scholar 

  42. Indrzejczak, A. 2007. Labelled tableau calculi for weak modal logics. Bulletin of the Section of logic 36(3–4): 159–173.

    Google Scholar 

  43. Goré, R. 1992. Cut-free sequent and tableau systems for propositional normal modal logics, PhD thesis, University of Cambridge.

    Google Scholar 

  44. Goré, R. 1999. Tableau methods for modal and temporal logics. In Handbook of tableau methods, eds. M. D’Agostino et al., 297–396. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  45. Wansing, H. 1998. Displaying modal logics. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  46. Wansing, H. 2002. Sequent systems for modal logics. In Handbook of philosophical logic, eds. D. Gabbay, and F. Guenthner, vol IV, 89–133. Dordrecht: Reidel Publishing Company.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Indrzejczak .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Indrzejczak, A. (2010). Standard Approach to Basic Modal Logics. In: Natural Deduction, Hybrid Systems and Modal Logics. Trends in Logic, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8785-0_6

Download citation

Publish with us

Policies and ethics