Advertisement

Standard Approach to Basic Modal Logics

  • Andrzej IndrzejczakEmail author
Chapter
Part of the Trends in Logic book series (TREN, volume 30)

Abstract

In this Chapter we focus on the class of non-axiomatic systems that are called standard in the sense of keeping intact all the machinery of suitable systems for classical logic. Extensions are obtained by means of additional modal rules. This group covers modal extensions of standard Gentzen SC, Hintikka-style modal TS, and some ND systems.

Reference

  1. [275]
    Thomason, R.H. 1970. A Fitch-style formulation of conditional logic. Logique et Analyse 13: 397–412.Google Scholar
  2. [169]
    Kripke, S. 1959. A completeness theorem in modal logic. Journal of Symbolic Logic 24: 1–14.CrossRefGoogle Scholar
  3. [288]
    Zeman, J.J. 1973. Modal logic. Oxford: Oxford University Press.Google Scholar
  4. [54]
    Borkowski, L., and J. Słupecki. 1958. A logical system based on rules and its applications in teaching mathematical logic. Studia Logica 7: 71–113.CrossRefGoogle Scholar
  5. [122]
    Hawthorn, J. 1990. Natural deduction in normal modal logic. Notre Dame Journal of Formal Logic 31: 263–273.CrossRefGoogle Scholar
  6. [229]
    Rautenberg, W. 1983. Modal tableau calculi and interpolation. Journal of Philosophical Logic 12: 403–423.CrossRefGoogle Scholar
  7. [117]
    Goré, R. 1999. Tableau methods for modal and temporal logics. In Handbook of tableau methods, eds. M. D’Agostino et al., 297–396. Dordrecht: Kluwer Academic Publishers.Google Scholar
  8. [93]
    Fitting, M. 1983. Proof methods for modal and intuitionistic logics. Dordrecht; Rei-del.Google Scholar
  9. [141]
    Indrzejczak, A. 1995. Dedukcja naturalna w logikach modalnych pierwszego rzȩdu. In Filozofia/Logika: Filozofia logiczna 1994, eds. J. Perzanowski, A. Pietruszczak, and C. Gorzka, 289–302, Wyd. Toruń: Uniwersytetu Mikołaja Kopernika.Google Scholar
  10. [75]
    Curry, H.B. 1950. A theory of formal deducibility. Notre Dame: University of Notre Dame Press.Google Scholar
  11. [253]
    Shvarts, G.F. 1989. Gentzen style systems for K45 and K45D. Logic at Botic ’89, 245–256. Berlin: Springer.Google Scholar
  12. [5]
    Anderson, A., and N.D. Belnap, Jr. 1975. Entailment: The logic of relewance and necessity, vol I. Princeton: Princeton University Press.Google Scholar
  13. [136]
    Hughes, G.E., and M.J. Cresswell. 1996. A new introduction to modal logic. London: Routledge.Google Scholar
  14. [256]
    Siemens, D.F. 1977. Fitch-style rules for many modal logics. Notre Dame Journal of Formal Logic 18: 631–636.CrossRefGoogle Scholar
  15. [66]
    Cerrato, C. 1994. Natural deduction based upon strict implication for normal modal logics. Notre Dame Journal of Formal Logic 35(4): 471–495.CrossRefGoogle Scholar
  16. [184]
    Martins, A.T., and L.R. Martins. 2008. Full classical S5 in natural deduction with weak normalization. Annals of Pure and Applied Logic 152: 132–147.CrossRefGoogle Scholar
  17. [220]
    Prawitz, D. 1965. Natural deduction. Stockholm: Almqvist and Wiksell.Google Scholar
  18. [59]
    Bull, R., and K. Segerberg. 1984. Basic modal logic. In Handbook of Philosophical Logic, eds. D. Gabbay, and F. Guenthner, vol II, 1–88. Dordrecht: Reidel Publishing Company.Google Scholar
  19. [241]
    Satre T.W. 1972. Natural deduction rules for modal logics. Notre Dame Journal of Formal Logic 13: 461–475.CrossRefGoogle Scholar
  20. [85]
    Feys, R. 1950. Les systemes formalises des modalites. Revue philosophicue de Louvain 48: 478–509.CrossRefGoogle Scholar
  21. [7]
    Andou, Y. A note on modal logic S4 in natural deduction. Available on www.hosei.ac.jp/museum/html/kiyo/58/articles/Andou.pdf
  22. [173]
    Lemmon, E.J. 1957. New foundations for Lewis modal systems. Journal of Symbolic Logic 22: 176–186.CrossRefGoogle Scholar
  23. [105]
    Garson, J.W. 2006. Modal logic for philosophers. Cambridge: Cambridge University Press.Google Scholar
  24. [89]
    Fitch, F. 1952. Symbolic logic. New York: Ronald Press Co.Google Scholar
  25. [233]
    Ridder, J. 1955. Die Gentzenschen Schlussverfahre in Modalen Aussagenlogiken. Indagationes Mathematicae 17: 163–276.Google Scholar
  26. [140]
    Indrzejczak, A. 1994. Natural deduction system for tense logics. Bulletin of the Section of Logic 23(4): 173–179.Google Scholar
  27. [132]
    Hintikka, J. 1957. Quantifiers in deontic logic. Societas Scientiarum Fennica, Commentationes Humanarum Literarum XXIII.Google Scholar
  28. [255]
    Sieg W., and S. Cittadini. 2005. Normal natural deduction proofs (in nonclassical logics). In Mechanizing mathematical reasoning, LNAI 2605, eds. D. Hutter, and W. Stephan, 169–191. Springer-Verlag.Google Scholar
  29. [172]
    Lavendhomme, R., and T. Lucas. 2000. Sequent calculi and decision procedures for weak modal systems. Studia Logica 65: 121–145.CrossRefGoogle Scholar
  30. [269]
    Takano, M. 1992. Subformula property as a substitute for cut-elimination in modal propositional logics. Mathematica Japonica 37(6): 1129–1145.Google Scholar
  31. [212]
    Plato von, J. 2005. Normal derivability in modal logic. Mathematical Logic Quaterly 54(6): 632–638.CrossRefGoogle Scholar
  32. [91]
    Fitch, F. 1966. Natural deduction rules for obligation. American Philosophical Quaterly 3:27–38.Google Scholar
  33. [94]
    Fitting, M. 1990. Destructive modal resolution. Journal of Logic and Computation 1(1): 83–97.CrossRefGoogle Scholar
  34. [160]
    Kanger, S. 1957. Provability in Logic, Stockholm: Almqvist & Wiksell.Google Scholar
  35. [170]
    Kripke, S. 1963. Semantical analysis of modal logic I. Zeitschrift fur Mathematische Logik und Grundlegen der Mathematik 9: 67–96.CrossRefGoogle Scholar
  36. [270]
    Takano, M. 2001. A modified subformula property for the modal logics K5 and K5D. Bulletin of the Section of Logic 30(2): 115–123.Google Scholar
  37. [189]
    Medeiros, M., and Da Paz N. 2006. A new S4 classical modal logic in natural deduction. Journal of Symbolic Logic 71(3): 799–809.CrossRefGoogle Scholar
  38. [76]
    Curry, H.B. 1952. The elimination theorem when modality is present. Journal of Symbolic Logic 17: 249–265.CrossRefGoogle Scholar
  39. [197]
    Ohnishi, M., and K. Matsumoto. 1957. Gentzen method in modal calculi I. Osaka Mathematical Journal 9: 113–130.Google Scholar
  40. [198]
    Ohnishi, M., and K. Matsumoto. 1959. Gentzen method in modal calculi II. Osaka Mathematical Journal 11: 115–120.Google Scholar
  41. [152]
    Indrzejczak, A. 2005. Sequent calculi for monotonic modal logics. Bulletin of the Section of logic 34(3): 151–164.Google Scholar
  42. [154]
    Indrzejczak, A. 2007. Labelled tableau calculi for weak modal logics. Bulletin of the Section of logic 36(3–4): 159–173.Google Scholar
  43. [116]
    Goré, R. 1992. Cut-free sequent and tableau systems for propositional normal modal logics, PhD thesis, University of Cambridge.Google Scholar
  44. [117]
    Goré, R. 1999. Tableau methods for modal and temporal logics. In Handbook of tableau methods, eds. M. D’Agostino et al., 297–396. Dordrecht: Kluwer Academic Publishers.Google Scholar
  45. [280]
    Wansing, H. 1998. Displaying modal logics. Dordrecht: Kluwer Academic Publishers.Google Scholar
  46. [281]
    Wansing, H. 2002. Sequent systems for modal logics. In Handbook of philosophical logic, eds. D. Gabbay, and F. Guenthner, vol IV, 89–133. Dordrecht: Reidel Publishing Company.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Dept. LogicUniversity of LódzLódzPoland

Personalised recommendations