Advertisement

Modal Hybrid Logics

  • Andrzej IndrzejczakEmail author
Chapter
Part of the Trends in Logic book series (TREN, volume 30)

Abstract

In this Chapter we briefly describe a powerfull extension of standard modal logic obtained by some modifications of the language. The fundamental change, forming the basis of the whole family of hybrid languages, involves the addition of special symbols called nominals. They enable explicit reference to states in Kripke models. The name of this approach reflects the fact that nominals are at the same time names of states in a model, and sentences of a modal language.

Keywords

Modal Logic Completeness Theorem Modal Language Hybrid Logic Tense Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Reference

  1. [114]
    Goranko, V. 1994. Temporal logic with reference pointers. In Temporal logic, LNiAI 827, 133–148. New York: Springer.Google Scholar
  2. [102]
    Gargov, G., and V. Goranko. 1993. Modal logic with names. Journal of Philosophical Logic 22: 607–636.CrossRefGoogle Scholar
  3. [35]
    Blackburn, P., M. DeRijke, and Y. Venema. 2001. Modal logic. Cambridge: Cambridge University Press.Google Scholar
  4. [30]
    Blackburn, P. 1992. Nominal tense logic. Notre Dame Journal of Formal Logic, 34: 56–83.CrossRefGoogle Scholar
  5. [4]
    Allen, J. 1984. Towards a general theory of knowledge and action. Artificial Intelligence 23: 123–154.CrossRefGoogle Scholar
  6. [36]
    Blackburn, P., and M. Marx. 2002. Tableaux for quantified hybrid logic. In Tableaux 2002, LNAI 2381, eds. U. Egly, and C. Fermuller, 38–52.Google Scholar
  7. [277]
    Tzakova, M. 1999. Tableau calculi for hybrid logics. In Conference on Tableaux Calculi and Related Methods (TABLEAUX), Saratoga Springs, ed. N. Murray, 278–292. USA: LNAI 1617.Google Scholar
  8. [96]
    Fitting, M., and R.L. Mendelsohn. 1998. First-order modal logic. Dordrecht: Kluwer.Google Scholar
  9. [57]
    Braüner, T. 2009. Hybrid logic. In Handbook of philosophical logic, 2nd ed., vol XVI. New York: Springer, to appear.Google Scholar
  10. [38]
    Blackburn, P., and M. Tzakova. 1998. Hybrid completeness. Logic Journal of the IGPL 6(4): 625–650.CrossRefGoogle Scholar
  11. [188]
    McCarthy, J., and P. Hayes. 1969. Some philosophical problems from the standpoint of artificial inteligence. In Machine Intelligence 4, eds. B. Meltzer, and D. Michie. Edinburgh: Edinburgh University Press.Google Scholar
  12. [13]
    Areces, C., B. ten Cate. 2006. Hybrid logics. In Handbook of modal logic, eds. P. Blackburn, J. van Benthem, and F. Wolter, 821–868. Amsterdam: Elsevier.Google Scholar
  13. [31]
    Blackburn, P. 1994. Tense, temporal reference and tense logic. Journal of Semantics 11: 83–101.CrossRefGoogle Scholar
  14. [9]
    Areces, C., P. Blackburn, and M. Marx. 2001. Hybrid logics: Characterization, interpolation and complexity. Journal of Symbolic Logic 66: 977–1010.CrossRefGoogle Scholar
  15. [41]
    Blackburn, P., and B. ten Cate. 2006. Pure extensions, proof rules and hybrid axiomatics. Studia Logica 75(3): 345–376.Google Scholar
  16. [155]
    Indrzejczak, A. 2007. Modal hybrid logic. Logic and Logical Philosophy 16: 147–257.Google Scholar
  17. [148]
    Indrzejczak, A. 2002. Hybrid system for (not only) hybrid logic. Abstracts of AiML 2002: 137–156, Toulouse.Google Scholar
  18. [37]
    Blackburn, P., and J. Seligman. 1995. Hybrid languages. Journal of Logic, Language and Information 4: 251–272.CrossRefGoogle Scholar
  19. [78]
    Demri, S. 1999. Sequent calculi for nominal tense logics: A step towards mechanization¿ In Tableaux 99, LNAI 1617, ed. N. Murray, 140–154. Berlin: Springer.Google Scholar
  20. [273]
    Ten Cate, B. 2004. Model theory for extended modal languages. PhD thesis, University of Amsterdam.Google Scholar
  21. [225]
    Prior, A. 1968. Papers on time and tense. Oxford: Clarendon/Oxford University Press.Google Scholar
  22. [115]
    Goranko, V., D. Vakarelov. 2001. Sahlqvist formulas in hybrid polyadic modal logics. Journal of Logic and Computation 11(5): 737–754.CrossRefGoogle Scholar
  23. [40]
    Blackburn, P., and B. ten Cate. 2002. Beyond pure axioms: Node creating rules in hybrid tableaux. In Hybrid logics, eds. C. Areces et al., 21–35.Google Scholar
  24. [8]
    Areces, C., P. Blackburn, and M. Marx. 2000. The computational complexity of hybrid temporal logics. Logic Journal of the IGPL 8(5): 653–679.CrossRefGoogle Scholar
  25. [231]
    Rescher, N., and A. Urquhart. 1971. Temporal logic. New York: Springer-Verlag.Google Scholar
  26. [248]
    Seligman, J. 1991. A cut-free sequent calculus for elementary situated reasoning. Technical Report HCRC/RP-22 HCRC, Edinburgh.Google Scholar
  27. [58]
    Bull, R. 1970. An approach to tense logic. Theoria 36: 282–300.CrossRefGoogle Scholar
  28. [125]
    Hemaspaandra, E. 1996. The price of universality. Notre Dame Journal of Formal Logic 37: 174–203.CrossRefGoogle Scholar
  29. [208]
    Perzanowski, J. 1989. Logiki modalne a filozofia. In Jak filozofować, ed. J. Perzanowski, 262–346. Warszawa: PWN.Google Scholar
  30. [209]
    Perzanowski, J. 1999. Combination semantics for intensional logics I. Logique et Analyse 165–166: 181–203.Google Scholar
  31. [210]
    Perzanowski, J. 2004. Towards combination metaphysics. Reports on Mathematical Logic 38: 93–116.Google Scholar
  32. [202]
    Passy, S., and T. Tinchev. 1985. PDL with data constants. Information Processing Letters 20: 35–41.CrossRefGoogle Scholar
  33. [203]
    Passy, S., and T. Tinchev. 1991. An essay in CDL. Information and Computation 93: 263–332.CrossRefGoogle Scholar
  34. [29]
    Blackburn, P. 1990. Nominal tense logic and other sorted intensional frameworks, Ph.D thesis, Centre for Cognitive Science, University of Edinburgh.Google Scholar
  35. [30]
    Blackburn, P. 1992. Nominal tense logic. Notre Dame Journal of Formal Logic, 34: 56–83.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Dept. LogicUniversity of LódzLódzPoland

Personalised recommendations