Skip to main content

The Role of Statistics for Long-Term Ecological Research

  • Chapter
  • First Online:

Abstract

Sustainable management of natural resources requires a good understanding of ecosystems components and their interrelationships. Statistics is essential for understanding the structure and behaviour of ecological processes and provides the basis of predictive modelling. Mostly, physical, chemical, and biological variables are recorded across time and space. They serve as indicators, giving information concerning the state and changes of ecosystems. Most of monitored ecological indicators are non-stationary in time structure. The classical static statistical methods revealed the presence of trends and long memories in these data sets. On the other hand, modern dynamic statistical methods indicate the presence of long-term cycling processes. The Fourier polynomial is a technique for approximating periodic functions by sums of cosine and sine periodic functions, shifted and scaled. Therefore, it may be suitable for approximating cycling processes with a fixed frequency as portrayed by some ecological indicators. Wavelet analysis can be used to investigate the timescale behaviour of ecological processes. This analysis reveals the long-term evolution of an ecological indicator at different resolutions, the dominant scale of variability in the data set, and its correlation and cross-correlation with other ecological indicators on a scale by scale basis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aström, K. (1970). Introduction to stochastic control theory. New York. Academic Press.

    Google Scholar 

  • Beck, M. B. (1979). Model structure identification from experimental data. In E. Halfon (Ed.), Theoretical systems ecology. New York: Academic Press.

    Google Scholar 

  • Beran, J. (1998). Statistics for long-memory processes. Boca Raton: Chapman & Hall.

    Google Scholar 

  • Bliss, C. J. (1970). Statistics in biology (vol. I, II, III). New York: McGraw-Hill.

    Google Scholar 

  • Bloomfield, P. (1976). Fourier analysis of time series: An introduction. New York: Wiley.

    Google Scholar 

  • Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time series analysis. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Brémaud, P. (2002). Mathematical principles of signal processing. New York: Springer.

    Google Scholar 

  • Brezonik, P. L., & Shannon, E. E. (1971). Trophic state of lakes in North Central Florida. Water Resources. Research Center, University of Florida, 13, 1–102.

    Google Scholar 

  • Brockwell, P. J., & Davis, R. A. (1998). Introduction to time series and forecasting. Berlin: Springer.

    Google Scholar 

  • Chatfield, C., & Collins, A. J. (1989). Introduction to multivariate analysis. London: Chapman & Hall.

    Google Scholar 

  • Chui, C. K. (1992). An introduction to wavelets. New York: Academic Press.

    Google Scholar 

  • Ciecka, J., Fabian, R., & Merilatt, D. (1980). Eutrophication measures for small lake water quality management. Water Resources Bulletin, 16, 681–689.

    Article  Google Scholar 

  • Daubechies, I. (1990). The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 36, 961–1005.

    Article  Google Scholar 

  • Daubechies, I. (1992). Ten lectures on wavelets. Philadelphia, PS: SIAM.

    Book  Google Scholar 

  • Debnath, L. (2002). Wavelet transforms and their applications. Basel: Birkhäuser.

    Book  Google Scholar 

  • Eason, G., Coles, C. W., & Gettinby, G. (1980). Mathematics and statistics for the bio-sciences. Chichester: Ellis Horwood.

    Google Scholar 

  • Einax, J., Zwanziger, H. W., & Geiß, S. (1997). Chemometrics in environmental analysis. Weinheim: VCH.

    Book  Google Scholar 

  • Gençay, R., Selcuk, F., & Whitcher, B. (2002). An introduction to wavelet and other filtering methods in finance and economics. New York: Academic Press.

    Google Scholar 

  • Grant, W. E., Pedersen, E. K., & Marín, S. L. (1997). Ecology and natural resource management. New York: Wiley.

    Google Scholar 

  • Green, P. E. (1978). Analyzing multivariate data. Hinsdale: Dryden Press.

    Google Scholar 

  • Haining, R. (2003). Spatial data analysis. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Han, J., & Kamber, M. (2006). Data mining – concepts and techniques. New York: Morgan Kaufmann.

    Google Scholar 

  • Hipel, K. W., & McLeod, A. I. (1994). Time series modelling of water resources and ecological systems. Amsterdam: Elsevier.

    Google Scholar 

  • Joliffe, I. T. (1986). Principal component analysis. Berlin: Springer.

    Book  Google Scholar 

  • Jørgensen, S. E. (1994). Fundamentals of ecological modelling. Amsterdam: Elsevier.

    Google Scholar 

  • Koopmans, L. H. (1985). The spectral analysis of time series. San Diego: Academic Press.

    Google Scholar 

  • Krzanowski, W. J. (1990). Principles of multivariate analysis. Belfast: The University Press.

    Google Scholar 

  • Kumar, P., & Foufoula-Georgiou, E. (1997). Wavelet analysis for geophysical applications. Revues of Geophysics. 35, 385–412.

    Article  Google Scholar 

  • Latini, G., & Passerini, G. (Eds.). (2004). Handling missing data. Southampton: WIT Press.

    Google Scholar 

  • Legendre, L., & Legendre, P. (1983). Numerical ecology. Amsterdam: Elsevier.

    Google Scholar 

  • Lepš, J., & Šmilauer, P. (2003). Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Little, R. J. A., & Rubin, D. B. (1987). Statistical analysis with missing data. Chichester: Wiley.

    Google Scholar 

  • Ludwig, J. A., & Reynolds, J. F. (1988). Statistical ecology. New York: Wiley.

    Google Scholar 

  • Mallat, S. (1998). A wavelet tour of signal processing. New York: Academic Press.

    Google Scholar 

  • Massart, D. L., & Kaufman, L. (1983). The interpretation of analytical chemical data by the use of cluster analysis. New York: Wiley.

    Google Scholar 

  • Mateu, J., & Montes, F. (2001). Spatial statistics. Southampton: WIT Press.

    Google Scholar 

  • McLachlan, G. J. (1992). Discriminant analysis and statistical pattern recognition. Chichester: Wiley.

    Book  Google Scholar 

  • Patil, G. P., Pielou, E. C., & Waters, W. E. (1971). Statistical ecology (vol. I, II, III). London, Pennsylvania: State University Press.

    Google Scholar 

  • Pearson, R. K. (2005). Mining imperfect data. Philadelphia: SIAM.

    Google Scholar 

  • Percival, D. B. (1995). On estimation of the wavelet variance. Biometrika, 82, 619–631.

    Article  Google Scholar 

  • Percival, D. B., & Walden, A. T. (2000). Wavelet methods for time series analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pielou, E. C. (1977). Mathematical ecology. New York: Wiley.

    Google Scholar 

  • Pollock, D. S. G. (1999). A handbook of time-series analysis, signal processing and dynamics. San Diego: Academic Press.

    Google Scholar 

  • Powell, T. M., & Steele, J. H. (Eds.). (1995). Ecological time series. New York: Chapman & Hall.

    Google Scholar 

  • Rebecca, M. (1999). Spectral analysis of time series data. New York: Guilford Press.

    Google Scholar 

  • Reckhow, K. H., & Chapra, S. C. (1983). Engineering approaches for lake management. Vol. 1: Data analysis and empirical modelling. Boston-London-Sydney-Wellington-Durban-Toronto: Butterworth.

    Google Scholar 

  • Rosenblatt, M. (2000). Gaussian and non-Gaussian linear time series and random fields. Berlin: Springer.

    Book  Google Scholar 

  • Schulze, E.-D., & Mooney, H. A. (Eds.). (1994). Biodiversity and ecosystem function. Berlin: Springer.

    Google Scholar 

  • Shastry, J. S., Fan, L. T., & Erickson, L. E. (1973). Nonlinear parameter estimation in water quality modelling. Journal of the Environmental Engineering Division, 99, 315–331.

    Google Scholar 

  • Shumway, R. H. (2005). Time series analysis and its applications. New York: Springer.

    Google Scholar 

  • Shumway, R. H., & Stoffer, D. S. (2000). Time series analysis and its applications. New York: Springer.

    Book  Google Scholar 

  • Straškraba, M., & Gnauck, A. (1985). Freshwater ecosystems – modelling and simulation. Amsterdam: Elsevier.

    Google Scholar 

  • Thomann, R. V., & Mueller, J. A. (1987). Principles of surface water quality modelling and control. New York: Harper & Row.

    Google Scholar 

  • Webster, R., & Oliver, M. A. (1990). Statistical methods in soil and land resource survey. Oxford: Oxford University Press.

    Google Scholar 

  • Whitcher, B. J. (1998). Assessing nonstationary time series using wavelets. PhD Thesis, Department of Statistics, University of Washington, Seattle.

    Google Scholar 

  • Young, P. C., & Young, T. (1992). Environmetric methods of nonstationary time-series analysis: Univariate methods. In C. N. Hewitt (Ed.), Methods of environmental data analysis. New York: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht Gnauck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gnauck, A., Li, BL.L., Feugo, J.D.A., Luther, B. (2010). The Role of Statistics for Long-Term Ecological Research. In: Müller, F., Baessler, C., Schubert, H., Klotz, S. (eds) Long-Term Ecological Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8782-9_8

Download citation

Publish with us

Policies and ethics