Skip to main content

Long-Term Ecosystem Dynamics: Theoretical Concepts of Environmental Change

  • Chapter
  • First Online:
Long-Term Ecological Research
  • 1862 Accesses

Abstract

The question of ecosystem dynamics is important because when studying ecosystems, particularly over the long term, one must expect that natural endogenous changes will occur. In other words, observed changes may not be solely reflective of human-induced or other exogenous perturbations, but rather represent the natural long-term dynamic which the system experiences. Therefore, ecosystem management must account for these expectations, such that the goal might not be to preserve a system in its current state, but to allow the range of natural dynamics to occur, to allow the system to follow its self-organizing trajectory. The challenge for ecosystem theory and long-term ecological research is to identify this trajectory or direction in which ecosystems change. We can for instance look at some of the main system characteristics such as species composition, functional integrity, or biodiversity, and also look at changes in the thermodynamic patterns of organization in the ecosystem. In this chapter, we review some of the standard concepts on ecosystem growth and development and discuss the use of holistic orientors and indicators as a means to understand long-term ecosystem dynamics. We also try to demonstrate some respective linkages for the analysis of human–environmental systems and derive some suggestions for environmental management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arthur, B. (1990). Positive feedbacks in the economy. Scientific American, 262, 92–99.

    Article  Google Scholar 

  • Bossel, H. (1998). Ecological orientors: Emergence of basic orientors in evolutionary self-organization. In F. MĂĽller, & M. Leupelt (Eds.), Eco targets, goal functions, and orientors (pp. 19–33). New York: Springer.

    Google Scholar 

  • Bossel, H. (1999). Indicators for sustainable development: Theory, method, applications. Winnipeg: International Institute for Sustainable Development.

    Google Scholar 

  • Bossel, H. (2004). Systeme, dynamik, simulation: Modellbildung, analyse und simulation. Norderstedt: BoD-Books on Demand.

    Google Scholar 

  • Cheslak, E. F., & Lamarra, V. A. (1981). The residence time of energy as a measure of ecological organization. In W. J. Mitsch, R. W. Bossermann, & J. M. Klopatek (Eds.), Energy and ecological modelling (pp. 591–600). Amsterdam: Elsevier.

    Google Scholar 

  • Connell, J. H., & Slatyer, R. O. (1977). Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist, 111, 1119–1144.

    Article  Google Scholar 

  • Diamond, J. (2005). Collapse: How societies choose to fail or succeed. New York: Viking.

    Google Scholar 

  • Drury, W. H., & Nisbet , I. C. T. (1973). Succession. Journal of the Arnold Arboretum, 54, 331–368.

    Google Scholar 

  • Fath, B. D., & Patten, B. C. (1999). Network synergism: Emergence of positive relations in ecological models. Ecological Modelling, 107, 127–143.

    Article  Google Scholar 

  • Fath, B. D., Patten, B. C., & Choi, J. S. (2001). Complementarity of ecological goal functions. Journal of Theoretical Biology, 208, 493–506.

    Article  CAS  Google Scholar 

  • Fath, B. D., Jørgensen, S. E., Patten, B. C., & Straškraba, M. (2004). Ecosystem growth and development. Biosystems, 77, 213–228.

    Article  Google Scholar 

  • Glenn-Lewin, D. C., Peet, R. K., & Veblen, T. T. (1992). Plant succession: Theory and prediction. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Grime, J. P. (1979). Plant strategies and vegetation strategies processes. Chichester: John Wiley.

    Google Scholar 

  • Gundersson, L. H., & Holling, C. S. (Eds.). (2003). Panarchy: Understanding transformations in human and natural systems. Washington, DC: Island Press.

    Google Scholar 

  • Hall, C. A. S. (1988). An assessment of several of the historically most influential theoretical models used in ecology and of the data provided in their support. Ecological Modelling, 43, 5–31.

    Article  Google Scholar 

  • Hansell, R., & Bass, B. (1998). Holling’s figure-eight model: A technical re-evaluation in relation to climate change and biodiversity. Journal of Environmental Monitoring and Assessment, 49, 157–168.

    Article  Google Scholar 

  • Holling, C. S. (1986). The resilience of terrestrial ecosystems: Local surprise and global change. In W. M. Clark, & R. E. Munn (Eds.), Sustainable development of the biosphere (pp. 292–317). Cambridge: Cambridge University Press.

    Google Scholar 

  • Horn, H. S. (1974). The ecology of secondary succession. Annual Review of Ecology and Systematics, 5, 25–37.

    Article  Google Scholar 

  • Jørgensen, S. E. (2002). Integration of ecosystem theories: A pattern. Dordrecht: Kluwer.

    Google Scholar 

  • Jørgensen, S. E., Fath, B., Bastianoni, S., Marquez, J., MĂĽller, F., Nielsen, S. N., et al.(2007). A new ecology – The systems perspective. Amsterdam: Elsevier Publishers.

    Google Scholar 

  • Jørgensen, S. E., & Mejer, H. F. (1979). A holistic approach to ecological modelling. Ecological Modelling, 7, 169–189.

    Article  Google Scholar 

  • Jørgensen, S. E., Patten, B. C., & Straškraba, M. (2000). Ecosystems emerging: 4. Growth. Ecological Modelling, 126, 249–284.

    Article  Google Scholar 

  • Kay, J. J. (1984). Self-organization in living systems. Dissertation, University of Waterloo.

    Google Scholar 

  • Kay, J. J. (2000). Ecosystems as self-organised holarchic open systems: Narratives and the second law of thermodynamics. In S. E. Jørgensen, & F. MĂĽller (Eds.), Handbook of ecosystem theories and management (pp. 135–160). Boca Raton: Lewis.

    Google Scholar 

  • Lotka, A. J. (1922). Contribution to the energetics of evolution. Proceedings of the National Academy of Sciences USA, 8, 147–151.

    Article  CAS  Google Scholar 

  • MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Princeton: Princeton University Press.

    Google Scholar 

  • Morowitz, H. J. (1968). Energy flow in biology; Biological organization as a problem in thermal physics. New York: Academic Press.

    Google Scholar 

  • MĂĽller, F., Breckling, B., Bredemeier, M., Grimm, V. Malchow, H., Nielsen, S. N., et al.(1997). Ă–kosystemare Selbstorganisation. In O. Fränzle, F. MĂĽller, & W. Schröder (Eds.), Handbuch der Ă–kosystemforschung (Chapter III-2.4). Landsberg: Ecomed.

    Google Scholar 

  • MĂĽller, F., & Fath, B. D. (1998). The physical basis of ecological goal functions – An integrative discussion. In F. MĂĽller & M. Leupelt (Eds.), Eco targets, goal functions, and orientors (pp. 269–285). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • MĂĽller, F., Gnauck, A., Hauhs, M., Wenkel, K.-O., Schubert, H., & Bredemeier, M. (2010). Theoretical demands for long-term ecological research and the management of long-term data sets. In F. MĂĽller, C. Baessler, H. Schubert, & S. Klotz (Eds.), Long-term ecological research: Between theory and application (pp. 11–25). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • MĂĽller, F., & Leupelt, M. (1998). Eco targets, goal functions and orientors. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • MĂĽller, F., & Nielsen, S. N. (2000). Ecosystems as subjects of self-organising processes. In S. E. Jørgensen, & F. MĂĽller (Eds.), Handbook of ecosystem theories and management. (pp. 177–194). Boca Raton: CRC Press.

    Google Scholar 

  • Odum, E. P. (1969). The strategy of ecosystem development. Science, 164, 262–270.

    Article  CAS  Google Scholar 

  • Odum, H. T., Brown, M. T., & Ulgiati, S. (2000). Ecosystems as energetic systems. In S. E. Jørgensen, & F. MĂĽller (Eds.), Handbook of ecosystem theories and management (pp. 283–302). Boca Raton: CRC Press.

    Google Scholar 

  • Odum, H. T., & Pinkerton, R. C. (1955). Time’s speed regulator: The optimum efficiency for maximum power output in physical and biological systems. American Scientist, 43, 331–343.

    Google Scholar 

  • Patten, B. C. (1992). Energy, emergy and environs. Ecological Modelling, 62, 29–69.

    Article  Google Scholar 

  • Patten, B. C. (1998). Network orientors: Steps towards a cosmography of ecosystems: Orientors for directional development, self-organisation, and autoevolution. In F. MĂĽller, & M. Leupelt (Eds.), Eco-targets, goal functions, and orientors (pp. 137–160). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Pickett, S. T. A., & White, P. S. (1985). The ecology of natural disturbance and patch dynamics. Orlando: Academic Press.

    Google Scholar 

  • Prigogine, I. (1955). Thermodynamics of irreversible processes. New York: Wiley.

    Google Scholar 

  • Roughgarden, J., May, R. M., & Levin, S. A. (Eds.). (1989). Perspectives in ecological theory. Princeton: Princeton University Press.

    Google Scholar 

  • Schneider, E. D., & Kay, J. J. (1994a). Complexity and thermodynamics: Towards a new ecology. Futures, 24, 626–647.

    Article  Google Scholar 

  • Schneider, E. D., & Kay, J. J. (1994b). Life as a manifestation of the second law of thermodynamics. Mathematical and Computer Modelling, 19, 25–48.

    Article  Google Scholar 

  • Schumpeter, J. A. (1911). Theorie der wirtschaftlichen Entwicklung: Eine Untersuchung ĂĽber Unternehmergewinn, Kapital, Kredit, Zins, und den Konjunkturzyklus. Leipzig: Duncker & Humblot.

    Google Scholar 

  • Shugart, H. H. (1984). A theory of forest dynamics: The ecological implications of forest succession models. New York: Springer.

    Google Scholar 

  • Shugart, H. H. (1998). Terrestrial ecosystems in changing environments. Cambridge: Cambridge University Press.

    Google Scholar 

  • Svirezhev, Y. (1998). Thermodynamic orientors: How to use thermodynamic concepts in ecology. In F. MĂĽller & M. Lepeult (Eds.), Eco targets, goal functions, and orientors pp. 102–122. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Tainter, J. A. (1988). The collapse of complex societies. Cambridge: Cambridge University Press.

    Google Scholar 

  • Taylor, D. R., Aarssen, L. W., & Loehle, C. (1990). On the relationship between r/K selection and environmental carrying capacity: A new habitat template for plant life history strategies. Oikos, 58, 239–250.

    Article  Google Scholar 

  • Ulanowicz, R. E. (1986). Growth and development: Ecosystems phenomenology. New-York: Springer-Verlag.

    Google Scholar 

  • Ulanowicz, R. E. (1997). Ecology, the ascendant perspective. Columbia: University Press.

    Google Scholar 

  • Ulanowicz, R. E. (2000). Ascendancy: A measure of ecosystem performance. In S. E. Jørgensen, & F. MĂĽller (Eds.), Handbook of ecosystem theories and management (pp. 303–316). Boca Raton: CRC Press.

    Google Scholar 

  • Wackernagel, M., & Rees, W. E. (1996). Our ecological footprint: Reducing human impact on the Earth. Philadelphia: New Society Publishers.

    Google Scholar 

  • Walker, L. R., & Del Moral, R. (2003). Primary succession and ecosystem rehabilitation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Walker, L. R., Walker, J., & Hobbs, R. (Eds.) (2007). Linking restoration and ecological succession. New York: Springer-Verlag.

    Google Scholar 

  • Weber, B. H., Depew, D. J., Dyke, C., Salthe, S. N., Schneider, E. D., Ulanowicz, R. E., et al.(1989). Evolution in thermodynamic perspective: An ecological approach. Biology and Philosophy, 4, 373–405.

    Article  Google Scholar 

  • Whittaker, R. H. (1953). A consideration of climax theory: The climax as a population and pattern. Ecological Monographs, 23, 41–78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Fath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fath, B.D., MĂĽller, F. (2010). Long-Term Ecosystem Dynamics: Theoretical Concepts of Environmental Change. In: MĂĽller, F., Baessler, C., Schubert, H., Klotz, S. (eds) Long-Term Ecological Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8782-9_3

Download citation

Publish with us

Policies and ethics