Skip to main content

A Novel Transform Domain Based Hybrid Recurrent Neural Equaliser for Digital Communication Channel

  • Chapter
  • First Online:
Electronic Engineering and Computing Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 60))

  • 1497 Accesses

Abstract

Efficient neural network based adaptive equalisations for digital communication channels have been suggested in recent past. Recurrent neural network (RNN) exhibits better performance in nonlinear channel equalization problem. In this present work a hybrid model of recurrent neural equaliser configuration has been proposed where a Discrete Cosine Transform (DCT) block is embedded within the framework of a conventional RNN structure. The heterogeneous configuration on the RNN framework needs training and involves updation of the connection weights using the standard RTRL algorithm, which necessitates the determination of errors at the nodes of the RNN module. To circumvent this difficulty, an adhoc solution has been suggested to back propagate the output error through this heterogeneous configuration. Simulation study and bit-error-rate performance analysis of the proposed Recurrent Transform Cascaded (RTCS) equaliser for standard communication channel models show encouraging results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibson, G.J., Siu, S., Chen, S., Cowan, C.F.N., Grant, P.M.: The application of nonlinear architectures to adaptive channel equalisation. Proceeding ICC’90 (Atlanta, GA), pp. 312.8.1–312.8.5, April 1990

    Google Scholar 

  2. Theodoridis, S., Cowan, C.F.N., Callender, C.P., See, C.M.S.: Schemes for equalisation of communication channels with non-linear impairments. IEEE Proc. Commun. 142(3), 165–171 (June 1995)

    Article  Google Scholar 

  3. Haykin, S.: Neural Networks – A Comprehensive Foundation. Macmillan, New York (1994)

    MATH  Google Scholar 

  4. Chen, S., Gibson, G.J., Cowan, C.F.N.: Adaptive channel equalisation using a polynomial perceptron structure. IEEE Proc. I Commun. Speech Vision 137(5), 257–264 (October 1990)

    Article  Google Scholar 

  5. Chen, C.N., Chen, K.H., Chiueh, T.D.: Algorithm and architecture design for a low complexity adaptive equaliser. IEEE Int. Symp. Circ. Syst. ISCAS’03 2, 304–307 (May 2003)

    Google Scholar 

  6. Kechriotis, G., Zervas, E., Manolakos, E.S.: Using recurrent neural networks for adaptive communication channel equalisation. IEEE Trans. Neural Networks 5(2), 267–278 (1994)

    Article  Google Scholar 

  7. Choi, J., Bouchard, M., Yeap, T.H.: Decision feedback recurrent neural equalization with fast convergence rate. IEEE Trans. Neural Network 16(3), 699–708 (2005)

    Article  Google Scholar 

  8. Parisi, R., Di Claudio, E.D., Orlandi, G., Rao, B.D.: Fast adaptive digital equalisation by recurrent neural networks. IEEE Trans. Signal Process 45(11), 2731–2739 (November 1997)

    Article  Google Scholar 

  9. Ortiz-Fuentes, J.D., Forcada, M.L.: A comparison between recurrent neural network architectures for digital equalisation. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-97) 4, 3281–3284, 21–24, April 1997

    Google Scholar 

  10. Jiang, H.R., Kwak, K.S.: On modified complex recurrent neural network adaptive equaliser. J. Circ. Syst. Comput. 11(1), 93–101 (2002)

    Google Scholar 

  11. Wang, X., Lin, H., Lu, J., Yahagi, T.: Combining recurrent neural networks with self-organizing map for channel equalisation. IEICE Trans. Commun. E85-B, 2227–2235 (October 2002)

    Google Scholar 

  12. Beaufays, F.: Transform-domain adaptive filters: an analytical approach. IEEE Trans. Signal Process. 43(2), 422–431 (February 1995)

    Article  Google Scholar 

  13. Marshall, D.F., Jenkins, W.K., Murphy, J.J.: The use of orthogonal transforms for improving performance of adaptive filters. IEEE Trans. Circ. Syst. 36(4), 474–484 (April 1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Das, S. (2010). A Novel Transform Domain Based Hybrid Recurrent Neural Equaliser for Digital Communication Channel. In: Ao, SI., Gelman, L. (eds) Electronic Engineering and Computing Technology. Lecture Notes in Electrical Engineering, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8776-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8776-8_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8775-1

  • Online ISBN: 978-90-481-8776-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics