Skip to main content

Applied Time Series Analysis

  • Chapter
  • First Online:
Applied Time Series Analysis and Innovative Computing

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 59))

  • 2076 Accesses

Abstract

There are many reasons to analyze the time series data, for example, to understand the underlying generating mechanism better, to achieve optimal control of the system, or to obtain better forecasting of future values. Applied time series analysis consists of empirical models for analyzing time series in order to extract meaningful statistics and other properties of the time series data. Time series models have various forms and represent different stochastic processes. Time series analysis model is usually classified as either time domain model or frequency domain model. Time domain models include the auto-correlation and cross-correlation analysis. In a time domain model, mathematical functions are usually used to study the data with respect to time. The three broad classes for modeling the variations of time series process are the autoregressive models, the integrated models, and the moving average models. The autoregressive integrated moving average models are the general class of these models for forecasting a time series that can be stationarized by transformations such as differencing. In a frequency domain model, the analysis of mathematical functions or signals is conducted with respect to frequency rather than time. Mathematical models can be used to convert the time series data between the time and frequency domains. The parameters and features in the frequency domain can be used as inputs for the mathematical models like discrimination analysis and improved results can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Box, G., Jenkins, G., Reinsel, G.: Time Series Analysis: Forecasting and Control, 3rd edn. Prentice-Hall, USA (1994)

    MATH  Google Scholar 

  • Brockwell, P., Davis, R.: Time Series: Theory and Methods, 2nd edn. Springer, Germany (1991)

    Book  Google Scholar 

  • Cooley, J., Tukey, J.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Article  MathSciNet  Google Scholar 

  • Corbett, J., et al.: Use of a random coefficient regression (RCR) model to estimate growth parameters. BMC Genet. 4(Suppl 1), S5 (2003). doi: 10.1186/1471-2156-4-S1-S5

    Article  Google Scholar 

  • Enders, W.: Applied Econometric Time Series. Wiley, USA (1995)

    Google Scholar 

  • Engelberg, S.: Digital Signal Processing: An Experimental Approach, Chap. 7, pp. 56. Springer, Berlin (2008)

    MATH  Google Scholar 

  • Feuerverger, A., Vardi, Y.: Positron emission tomography and random coefficients regression. Ann. Inst. Statist. Math. 52(1), 123–138 (2000)

    Article  MathSciNet  Google Scholar 

  • Finch, H.: Comparison of distance measures in cluster analysis with dichotomous data. J. Data Sci. 3, 85–100 (2005)

    Google Scholar 

  • Giles, J.: Time series analysis testing for two-step Granger noncausality in trivariate VAR models. In: Handbook of Applied Econometrics and Statistical Inference. Marcel Dekker, New York (2002)

    Google Scholar 

  • Granger, C.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–459 (1969)

    Article  Google Scholar 

  • Greene, W.: Econometric Analysis. Prentice-Hall, USA (2000)

    Google Scholar 

  • Hamilton, J.: Time series analysis. Princeton University Press, Princeton, NJ, USA (1994)

    MATH  Google Scholar 

  • Hartikainen, J., et al. Short-term measurement of heart rate variability. In: Clinical Guide to Cardiac Autonomic Tests. Kluwer, Dordrecht (1998)

    Google Scholar 

  • Herbst, L.: Periodogram analysis and variance fluctuations. J. Roy. Stat. Soc. Series B (Methodological) 25(2), 442–450 (1963)

    MathSciNet  MATH  Google Scholar 

  • Hill, T., Lewicki, P.: Statistics Methods and Applications. StatSoft, Tulsa, OK (2007)

    Google Scholar 

  • Ido, P., Oded, M., Irad, B.: Evaluation of gene-expression clustering via mutual information distance measure. BMC Bioinform. 8, 111 (2007). doi:10.1186/1471-2105-8-111

    Article  Google Scholar 

  • Jing, X., Zhang, D.: A face and palmprint recognition approach based on discriminant DCT feature extraction. IEEE Trans. Syst. Man Cyb. – Part B: Cyb. 34(6), 2405–2415 (2004)

    Article  Google Scholar 

  • Khan, J., et al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7(6), 673–679 (2001)

    Article  Google Scholar 

  • Kosuke, I., King, G., Lau, O.: Toward a common framework for statistical analysis and development. J. Comput. Graph. Stat. 17(4), 892–913 (2008)

    Article  MathSciNet  Google Scholar 

  • Laird, N., Ware, J.: Random effects models for longitudinal data. Biometrics 38, 963–974 (1982). doi:10.2307/2529876

    Article  MATH  Google Scholar 

  • Lewis, J.: Fast template matching. Vision Interface, 120–123 (1995)

    Google Scholar 

  • Liu, C.: Introduction to Combinatorial Mathematics. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  • Liu, Y., Eyal, E., Bahar, I.: Analysis of correlated mutations in HIV-1 protease using spectral clustering. Bioinformatics 24(10), 1243–1250 (2008)

    Article  Google Scholar 

  • McLachlan, G.: Discrimination Analysis and Statistical Pattern Recognition. Wiley Interscience, USA (2004)

    MATH  Google Scholar 

  • McQuarrie, A., Tsai, C.: Regression and Time Series Model Selection. World Scientific, Singapore (1998)

    Book  Google Scholar 

  • Oliveira, S., Seok, S.: A matrix-based multilevel approach to identify functional protein modules. Int. J. Bioinform. Res. Appl. 4(1), 11–27 (2008)

    Article  Google Scholar 

  • Ostrom, J.: Time Series Regression. Sage, Beverly Hills, CA, USA (1990)

    MATH  Google Scholar 

  • O’Sullivan, E., Rassel, G.: Research Methods for Public Administrators, 3rd edn. Longman, UK (1999)

    Google Scholar 

  • Percival, D., Walden, A.: Spectral Analysis for Physical Applications. Cambridge University Press, Cambridge, UK (1993)

    Book  Google Scholar 

  • Priestley, M.: Spectral Analysis and Time Series. Academic, London, UK (1982)

    MATH  Google Scholar 

  • Prinzie, A., Van den Poel, D.: Incorporating sequential information into traditional classification models by using an element/position-sensitive SAM. Decis. Support Syst. 42(2), 508–526 (2006)

    Article  Google Scholar 

  • Schuster, A.: On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena. Terr. Magn. Atmos. Electr. 3, 13–41 (1898)

    Article  Google Scholar 

  • Shumway, R., Stoffer, D.: Time Series Analysis and Its Applications, 2nd edn. Springer, Germany (2006)

    MATH  Google Scholar 

  • Sims, C.: Macroeconomics and reality. Econometrica 48, 1–48 (1980)

    Article  Google Scholar 

  • Spangl, B., Dutter, R.: Estimating spectral density functions robustly. REVSTAT – Stat. J. 5(1), 41–61 (2007)

    MathSciNet  MATH  Google Scholar 

  • Spath, H.: Cluster Analysis Algorithms. Ellis Horwood, Chichester, UK (1980)

    MATH  Google Scholar 

  • Taylor, J., et al.: Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics 18(Suppl. 2), 241–248 (2002)

    Article  Google Scholar 

  • Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 2nd edn. Academic, 2003

    Google Scholar 

  • Valdes, P., et al.: Frequency domain models of the EEG. Brain Topogr. 4(4), 309–319 (1992)

    Article  Google Scholar 

  • Voss, A., et al.: The application of methods of non-linear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death. Cardiovasc. Res. 31, 419–433 (1996)

    Article  Google Scholar 

  • Weisstein, E.: Discrete Fourier Transform. MathWorld – A Wolfram Web Resource, 2009. http://mathworld.wolfram.com/DiscreteFourierTransform.html.

  • Wiener, N.: The theory of prediction. In: The Theory of Prediction. McGraw-Hill, New York, USA (1956)

    Google Scholar 

  • Winter, S., et al.: Overcomplete BSS for convolutive mixtures based on hierarchical clustering. In: Independent Component Analysis and Blind Signal Separation. Springer, Berlin, Germany (2004)

    Google Scholar 

  • Wu, H., Siegel, M., Khosla, P.: Vehicle sound signature recognition by frequency vector principal Component Analysis. In: IEEE Instrumentation and Measurement Technology Conference, St. Paul, MN, USA, 18–20 May 1998

    Google Scholar 

  • Yeung, K., Ruzzo, W.: Principal component analysis for clustering gene expression data. Bioinformatics 17(9), 763–774 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sio-Iong Ao .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ao, SI. (2010). Applied Time Series Analysis. In: Applied Time Series Analysis and Innovative Computing. Lecture Notes in Electrical Engineering, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8768-3_2

Download citation

Publish with us

Policies and ethics