Skip to main content

Abstract

In this work we address the problem of object tracking in a largely unknown dynamic environment under the additional constraint of real-time operation and limited computational power. The main design directives remain that of real time execution and low price, high availability components. It is in a sense an investigation for the minimum required hardware and algorithmic complexity to accomplish the desired tasks. We present a system that is based on simple techniques such as template matching adapted for use in a dynamically changing environment. After development, the system was evaluated as to its suitability in a traffic monitoring application where it demonstrated adequate performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Unmanned systems roadmap: 2007–2032. Office of the Secretary of Defense (2007)

    Google Scholar 

  2. Vision hardware. University of Southern California. http://www-robotics.usc.edu/?avatar/vision_hw.htm (2004). Accessed 27 Jan 2005

    Google Scholar 

  3. Mejias, L., Saripalli, S., Sukhatme, G., Cervera, P.: Detection and tracking of external features in an urban environment using an autonomous helicopter. In: IEEE International Conference on Robotics and Automation (2005)

    Google Scholar 

  4. Hrabar, S., Sukhatme, G.S.:Acomparison of two camera configurations for optic-flow based navigation of a UAV through urban canyons. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2673–2680 (2004)

    Google Scholar 

  5. Sattigeri, R., Calise, A.J.: An adaptive approach to vision based information control. In: Guidance, Navigation and Control Conference, no. AIAA-2003-5727, Austin, TX (2003)

    Google Scholar 

  6. Enhanced Vision System (EVS) overview, CMC electronics. www.cmcelectronics.ca/En/Prodserv/Commav/commav_evs_overview_en.html (2001). Accessed 22 Jan 2005

    Google Scholar 

  7. Groven, J., Holk, E., Humbert, C., Krall, J., Schue, D.: Rose-Hulman institute of technology autonomous helicopter for the 2004 international aerial robotics competition (2004)

    Google Scholar 

  8. Nordberg, K., Doherty, P., Farneback, G., Forssen, P.-E., Granlund, G., Moe, A., Wiklund, J.: Vision for a UAV helicopter. In: 2002 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems—IROS 2002. Proc. Workshop WS6 Aerial Robotics, pp. 29–34, Lausanne (2002)

    Google Scholar 

  9. Anderson, J.D., Lee, D.-J., Edwards, B., Archibald, J., Greco, C.R.: Real-time feature tracking on an embedded vision sensor for small vision-guided unmanned vehicles, pp. 55–60. http://ieeexplore.ieee.org/iel5/4269829/4269830/04269882.pdf (2007). Accessed 20 July 2007

    Google Scholar 

  10. Sastry, V.: Vision based detection of autonomous vehicles for pursuit evasion games. In: 15th Triennial World Congress, Barcelona, Spain (2002)

    Google Scholar 

  11. Hrabar, S., Sukhatme, G.S.: Omnidirectional vision for an autonomous helicopter. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3602–3609 (2003)

    Google Scholar 

  12. Saripalli, S., Montgomery, J.F., Sukhatme, G.S.: Vision-based autonomous landing of an unmanned aerial vehicle. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2799–2804 (2002)

    Google Scholar 

  13. Woodley, B.R., Jones, H.L., LeMaster, E.A., Frew, E.W., Rock, S.M.: Carrier phase GPS and computer vision for control of an autonomous helicopter. In: IONGPS-96, Kansas City, Missouri (1996)

    Google Scholar 

  14. Debitetto, J.: Modeling and simulation for small autonomous helicopter development. In: AIAA-1997-3511 Modeling and Simulation Technologies Conference, New Orleans, LA (1997)

    Google Scholar 

  15. Woodley, B., Jones, H., Frew, E., LeMaster, E., Rock, S.: A contestant in the 1997 international aerial robotics competition. http://sun-valley.stanford.edu/papers/WoodleyJFLR:97.pdf (1997)

    Google Scholar 

  16. Holifield, N., Lallinger, J., Underwood, G.: International aerial robotics competition 2004. University of Texas at Austin, IEEE Robot Team Aerial Robotics Project 2004 http://iarc1.ece.utexas.edu/~lynca/final_documentation/utiarc 2004.pdf (2004)

    Google Scholar 

  17. Burleson, W., Salhany, W., Hudak, J.: Southern Polytechnic State University autonomous remote reconnaissance system. http://a-robotics.spsu.edu/SPSU_paper2005.pdf (2005)

    Google Scholar 

  18. Musial, M., Brandenburg, U.W., Hommel, G.: MARVIN—technische universität Berlin’s flying robot for the IARC millennial event. In: Proc. Symposium of the Association for Unmanned Vehicle Systems 2000, Orlando, Florida, USA (2000)

    Google Scholar 

  19. RMAX Type I/Type II G, Yamaha. http://www.yamahamotor.co.jp/global/business/sky/lineup/rmax/index.html (2004). Accessed 27 Jan 2005

    Google Scholar 

  20. Ludington, B., Reinmann, J., Vachtsevanos, G.: Target tracking and adversarial reasoning for unmanned aerial vehicles. In: Aerospace Conference, 2007 IEEE volume, Issue, pp. 1–17, 3–10 March 2007

    Google Scholar 

  21. Mejias, L., Saripalli, S., Campoy, P., Sukhatme, G.: Visual servoing of an autonomous helicopter in urban areas using feature tracking. J. Field Robot. 23(3/4), 185–199, Wiley Periodicals (2006)

    Article  Google Scholar 

  22. Mejias, L., Correa, J.F., Mondragon, I., Campoy, P.: COLIBRI: a vision-guided UAV for surveillance and visual inspection. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2760–2761, Rome, Italy (2007)

    Google Scholar 

  23. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of number of points required to represent a digitized line or its caricature. Can. Cartogr. 10(2), 112–122 (1973)

    Google Scholar 

  24. Bell, W., Felzenszwalb, P., Huttenlocher, D.: Detection and long term tracking of moving objects in aerial video (1999)

    Google Scholar 

  25. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)

    Google Scholar 

  26. Kanade, T., Amidi, O., Ke, Q.: Real-time and 3D vision for autonomous small and micro air vehicles. In: 43rd IEEE Conference on Decision and Control (CDC 2004) (2004)

    Google Scholar 

  27. Dobrokhodov, V.N., Kaminer, I.I., Jones, K.D., Ghabcheloo, R.: Vision-based tracking and motion estimation for moving targets using small UAVs. In: Proceedings of the 2006 American Control Conference, pp. 1428–1433, Minneapolis, Minnesota, USA, 14–16 June 2006

    Google Scholar 

  28. Mondragon, I.F., Campoy, P., Correa, J.F., Mejias, L.: Visual model feature tracking for UAV control. In: IEEE International Symposium on Intelligent Signal Processing, pp. 1–6 (2007)

    Google Scholar 

  29. Saripalli, S., Montgomery, J.F., Sukhatme, G.S.: Visually guided landing of an unmanned aerial vehicle. IEEE Trans. Robot. Autom. 19(3), 371–380 (2003)

    Article  Google Scholar 

  30. Wan, C.L., Dickinson, K.W.: Computer vision and neural networks for traffic monitoring. In: Road Traffic Monitoring 1992 (IEE Conf. Pub. 355), p. 143 (1992)

    Google Scholar 

  31. Ollero, A., Ferruz, J., Caballero, F., Hurtado, S., Merino, L.: Motion compensation and object detection for autonomous helicopter visual navigation in the COMETS system. In: IEEE International Conference on Robotics and Automation, New Orleans, LA (USA) (2004)

    Google Scholar 

  32. Ruffier, F., Franceschini, N.: Visually guided micro-aerial vehicle: automatic take off, terrain following, landing and wind reaction. In: Proceedings. ICRA’ 04. 2004 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2339–2346, 26 Apr–1 May 2004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michail Kontitsis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Kontitsis, M., Valavanis, K. (2009). A Cost Effective Tracking System for Small Unmanned Aerial Systems. In: Valavanis, K.P., Beard, R., Oh, P., Ollero, A., Piegl, L.A., Shim, H. (eds) Selected papers from the 2nd International Symposium on UAVs, Reno, Nevada, U.S.A. June 8–10, 2009. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8764-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8764-5_9

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8763-8

  • Online ISBN: 978-90-481-8764-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics