Skip to main content

An Efficient Path Planning and Control Algorithm for RUAV’s in Unknown and Cluttered Environments

  • Chapter
  • First Online:

Abstract

This paper presents an efficient planning and execution algorithm for the navigation of an autonomous rotary wing UAV (RUAV) manoeuvering in an unknown and cluttered environment. A Rapidly-exploring Random Tree (RRT) variant is used for the generation of a collision free path and linear Model Predictive Control(MPC) is applied to follow this path. The guidance errors are mapped to the states of the linear MPC structure by using the nonlinear kinematic equations. The proposed path planning algorithm considers the run time of the planning stage explicitly and generates a continuous curvature path whenever replanning occurs. Simulation results show that the RUAV with the proposed methodology successfully achieves autonomous navigation regardless of its lack of prior information about the environment.

This work is supported in part by the ARC Centre of Excellence programme, funded by the Australian Research Council (ARC) and the New South Wales State Government.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stentz, A., Hebert, M.: A complete navigation system for goal acquisition in unknown environments. Auton. Robots 2(2), 127–145 (1995)

    Article  Google Scholar 

  2. Brock, O., Khatib, O.: High-speed navigation using the global dynamic window approach. In: IEEE International Conference on Robotics and Automation, Detroit, Michigan (1999)

    Google Scholar 

  3. Ersson, T., Hu, X.: Path planning and navigation of mobile robots in unknown environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii (2001)

    Google Scholar 

  4. Bruce, J., Veloso, M.: Real-time randomized path planning for Robot navigation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland (2002)

    Google Scholar 

  5. Philippsen, R., Kolski, S., Macek, K., Siegwart, R.: Path planning, replanning, and execution for autonomous driving in urban and offroad environments. In: Proceedings of the ICRAWorkshop on Planning, Perception and Navigation for Intelligent Vehicles (2007)

    Google Scholar 

  6. Griffiths, S., Saunders, J., Curtis, A., Barber, B., McLain, T., Beard, R.: Maximizing miniature aerial vehicles. IEEE Robot. Autom. Mag. 13, 34–43 (2006)

    Article  Google Scholar 

  7. Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT, Cambridge (2005)

    MATH  Google Scholar 

  8. Frazzoli, E., Dahleh, M., Feron, E.: Real-Time Motion Plannig for Agile Autonomous Vehicles. American Control Conference, Arlington, Virginia (2001)

    Google Scholar 

  9. Espinoza, J., Sánchez, A., Osorio, M.: Exploring unknown environments with randomized strategies. In: MICAI 2006: Advances in Artificial Intelligence (2006)

    Google Scholar 

  10. Walton, D.J., Meek, D.S., Ali, J.M.: Planar G2 transition curves composed of cubic Bezier spiral segments. J. Comput. Appl. Math. 157(2), 453–476 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wzorek, M., Doherty, P.: Reconfigurable path planning for an autonomous unmanned aerial vehicle. In: IEEE International Conference on Hybrid Information Technology (2006)

    Google Scholar 

  12. Sanders, C.P., DeBitetto, P.A., Feron, E., Vuong, H.F., Leveson, N.: Hierarchical control of small autonomus helicopters. In: IEEE Conference on Decision and Control, Tempa, Florida (1998)

    Google Scholar 

  13. Muratet, L., Doncieux, S., Briere, Y., Meyer, J.A.: A contribution to vision-based autonomous helicopter flight in urban environments. Robot. Auton. Syst. 50, 195–209 (2005)

    Article  Google Scholar 

  14. Silvestre, C., Pascoal, A., Kaminer, I.: On the design of gain-scheduled trajectory tracking controllers. Int. J. Robust Nonlinear Control 12(9), 797–839 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kim, H., Shim, D., Sastry, S.: Nonlinear model predictive tracking control for rotorcraft-based unmanned aerial vehicles. In: American Control Conference, Anchorage, AK (2002)

    Google Scholar 

  16. Grancharova, A., Johansen, T.A., Kocijan, J.: Explicit model predictive control of gas-liquid separation plant via orthogonal search tree partitioning. Comput. Chem. Eng. 28, 2481–2491 (2004)

    Article  Google Scholar 

  17. LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning. TR 98-11, Computer Science Dept, Iowa State University (1998)

    Google Scholar 

  18. Bartels, R.H., Beatty, J.C., Barsky, B.A.: An Introduction to Splines for use in Computer Graphics and Geometric Modeling. Morgan Ksufmann Publishers, Los Altos, California (1986)

    Google Scholar 

  19. Yang, K., Sukkarieh, S.: 3D smooth path planning for a UAV in cluttered natural environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, 22–26 September 2008

    Google Scholar 

  20. Mettler, B., Tischler, M.B., Kanade, T.: System identification of small-size unmanned helicopter dynamics. In: American Helicopter Society 55th Forum, Montreal, Quebec (1999)

    Google Scholar 

  21. Shim, D.H., Kim, H.J., Sastry, S.: Hierarchical control system synthesis for rotorcraft-based unmanned aerial vehicles. In: AIAA Guidance, Navigation and Control Conference, Denver (2000)

    Google Scholar 

  22. Hwang, J., Arkin, R., Kwon, D.: Mobile robots at your fingertip: Bezier curve on-line trajectory generation for supervisory control. In: IEE/RSJ Int. Conference on Intelligent Robots and Systems, Las Vegas, Nevada (2003)

    Google Scholar 

  23. Gravesen, J.: Adaptive subdivision and the length and energy of Bezier curves. Comput. Geom. 8(1), 13–31 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shim, D., Chung, H., Sastry, S.: Conflict-free navigation in unknown urban environments. IEEE Robot. Autom. Mag. 13, 27–33 (2006)

    Article  Google Scholar 

  25. Scherer, S., Singh, S., Chamberlain, L., Elgersma, M.: Flying fast and low among obstacles: methodology and experiments. Int. J. Rob. Res. 27(5), 549–574 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwangjin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Yang, K., Gan, S.K., Sukkarieh, S. (2009). An Efficient Path Planning and Control Algorithm for RUAV’s in Unknown and Cluttered Environments. In: Valavanis, K.P., Beard, R., Oh, P., Ollero, A., Piegl, L.A., Shim, H. (eds) Selected papers from the 2nd International Symposium on UAVs, Reno, Nevada, U.S.A. June 8–10, 2009. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8764-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8764-5_6

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8763-8

  • Online ISBN: 978-90-481-8764-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics