Skip to main content

Abstract

UAS flight simulation for research and development is a difficult problem because each airframe requires accurate physical models, control systems, an organized method of testing new control systems, virtual cameras for vision-based control, and methods of testing new control in the transition from simulation to flight tests. In an environment where researchers are temporary, such as a university, a standard research and development platform with these properties expedites prototyping and prevents code loss when an employee leaves. We develop a research simulation which conforms to all of these properties inside a Matlab environment. A series of mex functions provide connections to the autopilot for hardware-in-the-loop testing, graphical interfaces, and vision processing. The option to write C mex functions offers a seamless method of porting code to embedded systems, minimizing coding errors. We demonstrate fast prototyping by showing flight test data where the simulation provided virtual vision data to avoid virtual obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beard, R., Kingston, D., Quigley, M., Snyder, D., Christiansen, R., Johnson, W., McLain, T., Goodrich, M.A.: Autonomous vehicle technologies for small fixed-wing UAVs. J. Aerosp. Comput. Inform. Commun. 2, 92–102 (2005)

    Article  Google Scholar 

  2. Grasmeyer, J.M., Keennon, M.T.: Development of the black widow micro air vehicle. In: 39th AIAA Aerospace Sciences Meeting and Exhibit (AIAA Paper No. 2001-0127) (2001)

    Google Scholar 

  3. Grzywna, J.W., Jain, A., Plew, J., Nechyba, M.C.: Rapid development of vision-based control for MAVs through a virtual flight testbed. In: International Conference on Robotics and Automation (2005)

    Google Scholar 

  4. Kaiser, K., Gans, N., Dixon, W.: Localization and control of an aerial vehicle through chained, vision-based pose reconstruction. In: American Control Conference, pp. 5934–5939 (2007)

    Google Scholar 

  5. Nelson, D.R., Barber, B., McLain, T.W., Beard, R.W.: Vector field path following for miniature air vehicles. IEEE Trans. Robot. 23, 519–529 (2007)

    Article  Google Scholar 

  6. Saunders, J., Beard, R.: Reactive vision based obstacle avoidance with camera field of view constraints. In: Guidance, Navigation, and Control Conference (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randal Beard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Saunders, J., Beard, R. (2009). UAS Flight Simulation with Hardware-in-the-loop Testing and Vision Generation. In: Valavanis, K.P., Beard, R., Oh, P., Ollero, A., Piegl, L.A., Shim, H. (eds) Selected papers from the 2nd International Symposium on UAVs, Reno, Nevada, U.S.A. June 8–10, 2009. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8764-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8764-5_21

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8763-8

  • Online ISBN: 978-90-481-8764-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics