Skip to main content

A Vision-Based Guidance System for UAV Navigation and Safe Landing using Natural Landmarks

  • Chapter
  • First Online:
Selected papers from the 2nd International Symposium on UAVs, Reno, Nevada, U.S.A. June 8–10, 2009

Abstract

In this paper a vision-based approach for guidance and safe landing of an Unmanned Aerial Vehicle (UAV) is proposed. The UAV is required to navigate from an initial to a final position in a partially known environment. The guidance system allows a remote user to define target areas from a high resolution aerial or satellite image to determine either the waypoints of the navigation trajectory or the landing area. A feature-based image-matching algorithm finds the natural landmarks and gives feedbacks to an onboard, hierarchical, behaviour-based control system for autonomous navigation and landing. Two algorithms for safe landing area detection are also proposed, based on a feature optical flow analysis. The main novelty is in the vision-based architecture, extensively tested on a helicopter, which, in particular, does not require any artificial landmark (e.g., helipad). Results show the appropriateness of the vision-based approach, which is robust to occlusions and light variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Valavanis, K.: Advances in unmanned aerial vehicles: state of the art and the road to autonomy. Intelligent Systems, Control and Automation: Science and Engineering 33 (2007)

    Google Scholar 

  2. Bejar, M., Ollero, A., Cuesta, F.: Modeling and control of autonomous helicopters, advances in control theory and applications. Lect. Notes Control Inf. Sci. 353 (2007)

    Google Scholar 

  3. Lee, D., Jin Kim, H., Sastry, S.: Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. Int. J. Control Autom. Syst. 7(3), 419–428 (2009)

    Article  Google Scholar 

  4. Bernard, M., Kondak, K., Hommel, G.: Framework for development and test of embedded flight control software for autonomous small size helicopters. Embedded Systems — Modeling, Technology, and Applications, pp. 159–168 (2006)

    Google Scholar 

  5. Monteriù, A., Asthana, P., Valavanis, K., Longhi, S.: Model-based sensor fault detection and isolation system for unmanned ground vehicles: theoretical aspects (part i and ii). In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2007)

    Google Scholar 

  6. Conte, G., Doherty, P.: An integrated UAV navigation system based on aerial image matching. In: IEEE Aerospace Conference, pp. 1–10 (2008)

    Google Scholar 

  7. Luo, P., Pei, H.: An autonomous helicopter with vision based navigation. In: IEEE International Conference on Control and Automation (2007)

    Google Scholar 

  8. He, Z., Iyer, R.V., Chandler, P.R.: Vision-based UAV flight control and obstacle avoidance. In: American Control Conference (2006)

    Google Scholar 

  9. Mondragon, I.F., Campoy, P., Correa, J.F., Mejias, L.: Visual model feature tracking for UAV control. In: IEEE International Symposium on Intelligent Signal Processing, WISP (2007)

    Google Scholar 

  10. Campoy, P., Correa, J.F., Mondragón, I., Martínez, C., Olivares, M., Mejías, L., Artieda, J.: Computer vision onboard UAVs for civilian tasks. J. Intell. Robot. Syst. 54(1–3), 105–135 (2009)

    Article  Google Scholar 

  11. Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Vision-based odometry and SLAM for medium and high altitude flying UAVs. J. Intell. Robot. Syst. 54(1–3), 137–161 (2009)

    Article  Google Scholar 

  12. Bethke, B., Valenti, M., How, J.: Cooperative vision based estimation and tracking usingmultiple UAVs. In: Advances in Cooperative Control and Optimization. Lect. Notes Control Inf. Sci., vol. 369, pp. 179–189 (2007)

    Google Scholar 

  13. Merz, T., Duranti, S., Conte, G.: Autonomous landing of an unmanned helicopter based on vision and inertial sensing. Experimental Robotics IX, Springer Tracts in Advanced Robotics, vol. 21, pp. 343–352 (2006)

    Article  Google Scholar 

  14. Daquan, T., Hongyue, Z.: Vision based navigation algorithm for autonomic landing of UAV without heading & attitude sensors. In: Proceedings of the Third International IEEE Conference on Signal-Image Technologies and Internet-Based System, pp. 972–978 (2007)

    Google Scholar 

  15. Meingast, M., Geyer, C., Sastry, S.: Vision based terrain recovery for landing unmanned aerial vehicles. In: 43rd IEEE Conference on Decision and Control (CDC), vol. 2, pp. 1670–1675 (2004)

    Google Scholar 

  16. Shakernia, O., Vidal, R., Sharp, C.S., Ma, Y., Sastry, S.S.: Multiple view motion estimation and control for landing an unmanned aerial vehicle. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2793–2798 (2002)

    Google Scholar 

  17. Saripalli, S., Montgomery, J., Sukhatme, G.: Visually-guided landing of an unmanned aerial vehicle. IEEE Trans. Robot. Autom. 19(3), 371–381 (2003)

    Article  Google Scholar 

  18. Saripalli, S., Sukhatme, G.S.: Landing a helicopter on a moving target. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2030–2035 (2007)

    Google Scholar 

  19. Garcia-Padro, P.J., Sukhatme, G.S., Montgomery, J.F.: Towards vision-based safe landing for an autonomous helicopter. In: Robotics and Autonomous Systems, vol. 38, no. 1, pp. 19–29(11). Elsevier (2002)

    Article  Google Scholar 

  20. Johnson, A., Montgomery, J., Matthies, L.: Vision guided landing of an autonomous helicopter in hazardous terrain. In: Proceedings of the IEEE International Conference on Robotics and Automation (2005)

    Google Scholar 

  21. Templeton, T., Shim, D.H., Geyer, C., Sastry, S.: Autonomous vision-based landing and terrain mapping using am MPC-controlled unmanned rotorcraft. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1349–1356 (2007)

    Google Scholar 

  22. Se, S., Lowe, D., Little, J.: Vision-based mobile robot localization and mapping using scaleinvariant features. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2051–2058 (2001)

    Google Scholar 

  23. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  24. Frontoni, E., Zingaretti, P.: Adaptive and fast scale invariant feature extraction. In: Second International Conference on Computer Vision Theory and Applications, Workshop on Robot Vision (2007)

    Google Scholar 

  25. Frontoni, E., Zingaretti, P.: Feature extraction under variable lighting conditions. CISI (2006)

    Google Scholar 

  26. Bramwell, A.R.S., Done, G., Balmford, D.: Bramwell’s Helicopter Dynamics, 2nd edn. Butterworth Heinemann (2001)

    Google Scholar 

  27. Mancini, A., Cesetti, A., Iuale’, A., Frontoni, E., Zingaretti, P., Longhi, S.: Aframework for simulation and testing of UAVs in cooperative scenarios. In: International Symposium on Unmanned Aerial Vehicles (UAV’08) (2008)

    Google Scholar 

  28. Montgomery, J.: Learning helicopter control through “teaching by showing”. Ph.D. Thesis, School of Comp. Sci., USC (1999)

    Google Scholar 

  29. Mataric, M.J.: Behavior-based control: examples from navigation, learning and group behavior. J. Exp. Theor. Artif. Intell. (Special Issue on Software Architecture for Physical Agents) 9(2–3), 67–83 (1997)

    Google Scholar 

  30. Shim, D.H., Kirn, H.J., Sastry, S.: Hierarchical control system syntesys for rotorcraft-based unmanned aerial vehicles. In: AIAA Guidance, Navigation and Control Conference and Exhibit (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cesetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Cesetti, A., Frontoni, E., Mancini, A., Zingaretti, P., Longhi, S. (2009). A Vision-Based Guidance System for UAV Navigation and Safe Landing using Natural Landmarks. In: Valavanis, K.P., Beard, R., Oh, P., Ollero, A., Piegl, L.A., Shim, H. (eds) Selected papers from the 2nd International Symposium on UAVs, Reno, Nevada, U.S.A. June 8–10, 2009. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8764-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8764-5_12

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8763-8

  • Online ISBN: 978-90-481-8764-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics