Skip to main content

Cyanobacterial Reclamation of Salt-Affected Soil

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 4))

Abstract

Salinity has been an important historical factor which has influenced the life span of agricultural systems. Around 10% of the total cropped land surface is covered with different types of salt-affected soils and the Asian continent accounts for the largest area affected by the salinity of various intensities. Cyanobacteria are capable of not only surviving, but thriving in conditions which are considered to be inhabitable, tolerating desiccation, high temperature, extreme pH and high salinity, illustrating their capacity to acclimatise to extreme environments. Until recently, the responses of cyanobacteria to salinity stresses were poorly documented as compared to heterotrophic bacteria and phototrophic eukaryotic algae. Cyanobacteria can be used to reclaim alkaline soils and fertility can be improved for subsequent cultivation of cereal crops, sugarcane and horticultural crops. Therefore we present here a review on cyanobacterial reclamation of salt-affected soil. Substantial progress has been made towards better understanding of the physiological mechanisms responsible for salinity tolerance and osmotic adjustment in cyanobacteria. Many researchers throughout the world have worked on probable mechanisms of salt tolerance studies in cyanobacteria. These organisms evolved about 3,000 million years ago and are considered to be the primary colonisers of the inhospitable ecosystems. The physiological aspects for the adaptation of cyanobacteria to high salinities include (a) synthesis and accumulation of osmoprotective compounds, (b) maintenance of low internal concentrations of inorganic ions and (c) expression of a set of salt-stress proteins. Exposure of cyanobacterial cells to different abiotic stresses resulted in rapid expression of several stress-regulated proteins and modifications in protein synthesis programme. The synthesis of organic solutes like disaccharides (sucrose, trehalose and glucosyl glycerol), quaternary amines (glycine betaine) and free amino acids (glutamine) are well-documented. The protection against alkaline environment is provided by the synthesis of specific fatty acids, sucrose- and osmotic-stress-induced proteins. In cyanobacteria, accumulation of internal osmoticum in the form of inorganic ions and prevention of intracellular Na+ accumulation by the curtailment of Na influx and by efficient active efflux mechanisms or metabolic adjustments have been investigated in depth. The Na+ extrusion in cyanobacteria is driven by a Na+/H+ antiporter, which is energised by enhanced activity of cytochrome oxidase. The inhibition of sodium ion influx appears to be a major mechanism for the survival of cyanobacteria against salt stress and synthesis of salt-stress proteins have been found in cyanobacteria. These organisms have been recognised as an important agent in the stabilisation of soil surfaces primarily through the production of extracellular polysaccharides which are prominent agents in the process of aggregate formation and increase in soil fertility. Cyanobacterial application results in the enrichment of soil with fixed nitrogen, soil structure improvement and declining trend of pH, electrical conductivity (EC) and Na+. The extracellular polysaccharides excreted by cyanobacteria have been reported to be responsible for binding of soil particles, thus, leading to the formation of a tough and entangled superficial structure that improves the stability of soil surface and protects it from erosion. The potential impact of these organisms on agriculture through their use as soil conditioners, plant growth regulators and soil health ameliorators has been well-recognised. Besides bringing about an improvement in the yield of rice, cyanobacteria produce direct and indirect beneficial changes in the physical, chemical and biological properties of soil and soil–water interface in the rice fields, which are of agronomic importance. Certain cyanobacteria have been found not only to grow in saline ecosystems but also improve the physico-chemical properties of the soil by enriching them with carbon, nitrogen and available phosphorus. Flushing of field may not be effective for the reclamation of saline soils and the addition of cyanobacterium inoculum along with the addition of gypsum is required before irrigation to ameliorate saline soils. Nitrogen-fixing cyanobacteria can be used as biological input to improve soil texture, conserve moisture, scavenge the toxic sodium cation from the soil complex and improve the properties of soils. Virtually negligible information exists on the genetics of cyanobacterial halotolerance. The presence of combined nitrogen which effectively curtails sodium accumulation and supports extra nitrogen demand for osmoregulation during slat stress confers considerable salt tolerance on cyanobacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abhishek C, Mohammad Z, Abraham G, Prasad SM (2006) Proline accumulation in Cylindrospermum sp. Environ Exp Bot 57:154–159

    Article  CAS  Google Scholar 

  • Acea MJ, Prieto-Fernandez A, Diz-Cid N (2003) Cyanobacterial inoculation of heated soils: effect on microorganisms of C and N cycles and on chemical composition in soil surface. Soil Biol Biochem 35:513–524

    Article  CAS  Google Scholar 

  • Alexander RW, Calvo A (1990) The influence of lichens on slope processes in some Spanish badlands. In: Thornes JB (ed) Vegetation and erosion. Wiley, Chichester, England, pp 385–398

    Google Scholar 

  • Ali S, Sandhu GR (1972) Blue green algae of the saline soils of the Punjab. Oikos 23:268–272

    Article  Google Scholar 

  • Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I, Murata N (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt induced damage in Synechococcus. Plant Physiol 125:1842–1853

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Osuzuki I, Tasaka Y, Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci U S A 96:5862–5867

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000a) Ionic and osmotic effects of NaCl-induced inactivation of photosystem I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000b) Inactivation of photosystem I and II in response to osmotic stress in Synechococcus: contribution of water channels. Plant Physiol 122:1201–1208

    Article  PubMed  CAS  Google Scholar 

  • Allen MB, Arnon DI (1955) Studies on nitrogen fixing blue green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm. Plant Physiol 30:366–372

    Article  PubMed  CAS  Google Scholar 

  • Amsaveni P (1995). Effect of certain nutrients on the growth and ammonia excretion by the saline tolerant cyanobacteria and their role as biofertilizers for bioreclamation of saline and sodic soils. Ph.D. Thesis, TNAU, Coimbatore, Tamilnadu, India

    Google Scholar 

  • Antarikanonda P, Amarit P (1991) Influence of blue-green algae and nitrogen fertilizer on rice yield in saline soils Kasctsart. J Nat Sci 25:18–25

    Google Scholar 

  • Apte SK (1992) Molecular biology of cyanobacterial nitrogen fixation: recent advances. Indian J Microbiol 32:103–126

    Google Scholar 

  • Apte SK (1993) Cyanobacterial nitrogen fixation; molecular genetic aspects. Proc Indian Natl Sci Acad B59:367–386

    Google Scholar 

  • Apte SK, Bhagwat AA (1989) Salinity-stress-induced proteins in two nitrogen-fixing Anabaena strains differentially tolerant to salt. J Bacteriol 171:909–915

    PubMed  CAS  Google Scholar 

  • Apte SK, Thomas J (1980) Sodium is required for nitrogenase activity in cyanobacteria. Curr Microbiol 3:291–293

    Article  CAS  Google Scholar 

  • Apte SK, Thomas J (1974) Use of radiations and radioisotopes in studies of plant productivity. In: Proceedings of the symposium of the department of atomic energy, Government of India, Bombay, pp 783

    Google Scholar 

  • Apte SK, Thomas J (1983) Sodium transport in filamentous nitrogen-fixing cyanobacteria. J Biosci 5:225–234

    Article  CAS  Google Scholar 

  • Apte SK, Thomas J (1984) Effect of sodium on nitrogen fixation in Anabaena torulosa and Plectonema boryanum. J Gen Microbiol 130:1161–1168

    CAS  Google Scholar 

  • Apte SK, Thomas J (1986) Membrane electrogenesis and sodium transport in filamentous nitrogen-fixing cyanobacteria. Eur J Biochem 154:395–401

    Article  PubMed  CAS  Google Scholar 

  • Apte SK, Thomas J (1997) Possible amelioration of coastal soil salinity using halo tolerant nitrogen fixing cyanobacteria. Plant Soil 189:205–211

    Article  CAS  Google Scholar 

  • Apte SK, Fernandes T, Badran H, Ballal A (1998) Expression and possible role of stress-responsive proteins in Anabaena. J biosci 23(4):399–406

    Article  CAS  Google Scholar 

  • Apte SK, Fernandes TA, Iyer V, Alahari A (1997) Molecular basis of tolerance to salinity and drought stresses in photosynthetic nitrogen-fixing cyanobacteria. In: Tewari KK, Singhal GS (eds) Plant molecular biology and biotechnology. Narosa Publications, New Delhi, pp 258–268

    Google Scholar 

  • Apte SK, Reddy BR, Thomas J (1987) Relationship between sodium influx and salt tolerance of nitrogen-fixing cyanobacteria. Appl Environ Microbiol 53:1934–1939

    PubMed  CAS  Google Scholar 

  • Ardelean II (1966). Biosensors with intact cyanobacteria for environmental protection. In: Subramanian G, Kaushik BD, Venkataraman GS (eds) Cyanobacterial biotechnology. Science Publishers. Inc., USA, pp 75

    Google Scholar 

  • Aziz MA, Hashem MA (2003) Role of cyanobacteria in improving fertility of saline soil. Pak J Biol Sci 6(20):1751–1752

    Article  Google Scholar 

  • Aziz MA, Hashem MA (2004) Role of Cyanobacteria on yield of rice in saline soil. Pak J Biol Sci 7:309–311

    Article  Google Scholar 

  • Baker DW, Brand JJ (1985) Anacystis nidulans demonstrates a photosystem II cation requirement satisfied only by Ca21 or Na21. Plant Physiol 79:552–558

    Article  Google Scholar 

  • Bakker EP (1993). Alkali cation transport systems in prokaryotes. CRC Press, Boca Raton, FL, pp 205–224

    Google Scholar 

  • Belnap J, Gardner JS (1993) Soil microstructure of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. Great Basin Nat 53:40–47

    Google Scholar 

  • Berry S, Esper B, Karandashova I, Teuber M, Elanskaya I, Rogner M, Hagemann M (2003) Potassium uptake in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 depends on a Ktr-like system encoded by slr1509 (ntpJ). FEBS Lett 548:53–58

    Article  PubMed  CAS  Google Scholar 

  • Bhadauriya P, Gupta R, Singh S, Bisen P (2007) Physiological and biochemical alterations in a diazotrophic cyanobacterium Anabaena cylindrica under NaCl Stress. Curr Microbiol 55:334–338

    Article  PubMed  CAS  Google Scholar 

  • Bhagwat AA, Apte SK (1989) Comparative analysis of proteins induced by heat shock, salinity and osmotic stress in the nitrogen fixing cyanobacterium Anabaena sp. strain L-31. J Bacteriol 171:5187–5189

    PubMed  CAS  Google Scholar 

  • Bhatnagar A, Roychoudhury P (1992) Dissolution of limestone by cyanobacteria. In: Kaushik BD (ed) Proceedings of the national symposium on cyanobacterial nitrogen fixation. Today & Tomorrow’s Printers and Publishers, IARI, New Delhi, pp 331–335

    Google Scholar 

  • Billini M, Stamatakis K, Sophianopoulou V (2008) Two members of a network of putative Na+/H+ antiporters are involved in salt and pH tolerance of the freshwater cyanobacterium Synechococcus elongates. J Bacteriol 190(19):6318–6329

    Article  PubMed  CAS  Google Scholar 

  • Black CA (1968) Soil–plant relationships. Wiley, New York, p 790

    Google Scholar 

  • Blumwald E, Tel-Or E (1984) Salt adaptation of cyanobacterium Synechococcus 6311 growing in continuous culture (turbidostat). Plant Physiol 74:183–185

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E, Mehlhorn RJ, Packer L (1983) Studies of osmoregulation in salt adaptation of cyanobacteria with ESR spin probe technique. Proc Natl Acad Sci U S A 80:2599–2602

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E, Wolosin JM, Packer L (1984) Na+/H+ exchange in the cyanobacterium Synechococcus 6311. Biochem Biophys Res Commun 122:452–459

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Ayoubi P, Borchert C, Bressan RA, Burnap RL, Cushman JC, Cushman MA, Deyholos M, Galbraith DW, Hasegawa PM, Jenks M, Kawasaki S, Koiwa H, Kore-eda S, Lee BH, Michalowski CB, Misawa E, Nomura M, Ozturk M, Postier B, Prade R, Song CP, Tanaka Y, Wang H, Zhu JK (2001) A genomics approach towards salt stress tolerance. Plant Physiol Biochem 39:295–311

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

    Article  PubMed  CAS  Google Scholar 

  • Brahamsha B (1996) An abundant cell-surface polypeptide is required for swimming by the nonflagellated marine cyanobacterium Synechococcus. Proc Natl Acad Sci U S A 93:6504–6509

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Bremer E, Kramer R (2000). In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington DC, pp 79–97

    Google Scholar 

  • Brock TD (1973) Evolutionary and ecological aspects of the cyanophytes. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell Scientific Publications Ltd, Oxford, pp 487–500

    Google Scholar 

  • Brotherson JD, Rushforth SR (1983) Influence of cryptogamic crusts on moisture relationships of soils in Navajo National Monument, Arizona. Great Basin Nat 43:73–78

    Google Scholar 

  • Brownell PF, Nicholas DJD (1967) Some effect of sodium on nitrate assimilation and nitrogen fixation in Anabaena cylindrica. Plant Physiol 42:915–921

    Article  PubMed  CAS  Google Scholar 

  • Buck D, Smith G (1995) Evidence for a Na+/H+ electrogenic antiporter in an alkaliphilic cyanobacterium Synechocystis. FEMS Microbiol Lett 128:315–320

    CAS  Google Scholar 

  • Chauhan VS, Singh S, Pandey PK, Bisen PS (1999) Isolation and partial characterization of NaCl-tolerant mutant strain of Anabaena variabilis with impaired glutamine synthetase activity. J Basic Microbiol 39:219–226

    Article  CAS  Google Scholar 

  • Cheeseman CI, Delvin D (1985) The effect of amino acids and dipeptides on sodium ion transport in rat enterocytes. Biochim Biophys Acta 812:767–773

    Article  PubMed  CAS  Google Scholar 

  • Chen TH, Huang TC, Chow TJ (1988) Calcium requirement in nitrogen fixation in the cyanobacterium Synechococcus RF-1. Planta 173:253–256

    Article  CAS  Google Scholar 

  • Chepil WS, Woodruff NP (1963) The physics of wind erosion and its control. Adv Agron 15:211–302

    Article  Google Scholar 

  • De PK, Sulaiman M (1950) The influence of algal growth in the rice fields on the yield of crops. Indian J Agric Sci 20:327–342

    Google Scholar 

  • Deshnium P, Gombos Z, Nishiyama Y, Murata N (1997) The action in vivo of glycine betaine in enhancement of tolerance of Synechococcus sp. strain PCC 7942 to low temperature. J Bacteriol 179:339–344

    PubMed  CAS  Google Scholar 

  • Deshnium P, Los DA, Hayashi H, Mustardy L, Murata N (1995) Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress. Plant Mol Biol 29:897–907

    Article  PubMed  CAS  Google Scholar 

  • Dewar MA, Barber J (1973) Cation regulation in Anacystis nidulans. Planta 113:143–155

    Article  CAS  Google Scholar 

  • Dinnbier U, Limpinsel E, Schmid R, Bakker EP (1988) Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 150(4):348–357

    Article  PubMed  CAS  Google Scholar 

  • Elanskaya IV, Karandashova IV, Bogachev AV, Hagemann M (2002) Functional analysis of the Na+/H+ antiporter encoding genes of the cyanobacterium Synechocystis PCC 6803. Biochemistry 67:432–440

    PubMed  CAS  Google Scholar 

  • Elayarajan M (2002). Land application of treated paper board mill effluent on soil- water-plant ecosystem. Ph.D. Thesis, (Soil Science), TNAU, Coimbatore.

    Google Scholar 

  • El-Shahaby OA (1992) Internal water status, endogenous levels of hormones, photosynthetic activity in well watered and previously water stressed Vigna sinensis plants under ABA effect. Mans Sci Bull 19:229–245

    Google Scholar 

  • Emerson R, Lewis CM (1942) The photosynthetic efficiency of phycocyanin in Chroococcus and the problem of carotenoid participation in photosynthesis. J Gen Physiol 25:579–595

    Article  PubMed  CAS  Google Scholar 

  • England RR, Evans EH (1983) A requirement of Ca21 in the extraction of O2-evolving photosystem 2 preparations from the cyanobacterium Anacystis nidulans. Biochem J 210:473–476

    PubMed  CAS  Google Scholar 

  • Erdmann N, Fulda S, Hagemann M (1992) Glucosylglycerol accumulation during salt acclimation of two unicellular cyanobacteria. J Gen Microbiol 138:363–368

    CAS  Google Scholar 

  • Espie GS, Kandasamy RA (1994) Monensin inhibition of Na+-dependent HCO3- transport distinguishes it from Na+-independent transport and provides evidence for Na+/HCO3-symport in the cyanobacterium Synechococcus UTEX 625. Plant Physiol 104:1419–1428

    PubMed  CAS  Google Scholar 

  • Ferjani A, Mustardy L, Sulpice R, Marin K, Suzuki I, Hagemann M, Murata N (2003) Glucosylglycerol, a compatible solute, sustains cell division under salt stress. Plant Physiol 131(4):1628–1637

    Article  PubMed  CAS  Google Scholar 

  • Fernandes T, Thomas J (1982) Control of sporulation in the filamentous cyanobacterium Anabaena torulosa. J Biosci 4:85–94

    Article  Google Scholar 

  • Fernandez VE, Ucha A, Quesada A, Leganes F, Carreres R (2000) Contribution of N2 fixing cyanobacteria to rice production: availability of nitrogen from 15N labeled cyanobacteria and ammonium sulphate to rice. Plant Soil 221:107–112

    Article  Google Scholar 

  • Flowers TJ, Troke PK, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Ann Rev Plant Physiol 28:89–121

    Article  CAS  Google Scholar 

  • Fogg GE (1956) Nitrogen fixation by photosynthetic organism. Ann Rev Plant Physiol 7:51–70

    Article  CAS  Google Scholar 

  • Fogg GE, Stewart WDP, Fay P, Walsby AE (1973) The blue-green algae. Academic, London

    Google Scholar 

  • Fulda S, Huang F, Nilsson F, Hagemann M, Norling B (2000) Proteomics of Synechocystis sp. strain PCC 6803: Identification of periplasmic proteins cells grown at low and high salt concentrations. Eur J Biochem 267:5900–5907

    Article  PubMed  CAS  Google Scholar 

  • Fulda S, Jeremias I, Steiner HH, Pietsch T, Debatin KM (1999) Betulinic acid: a new cytotoxic agent against malignant brain-tumor cells. Int J Cancer 82:435–441

    Article  PubMed  CAS  Google Scholar 

  • Fulda S, Mikkat S, Huang F, Huckauf J, Marin K, Norling B, Hagemann M (2006) Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. Proteomics 6(9):2733–2745

    Article  PubMed  CAS  Google Scholar 

  • Gabbay-Azaria R, Tel-Or E (1993) Mechanisms of salt tolerance in cyanobacteria. In: Gresshoff PM (ed) Plant responses to the environment. CRC Press, Boca Raton, FL, pp 692–698

    Google Scholar 

  • Goel S, Gautam M, Kaushik BD (1997) Nitrogen fixation and protein profiles of halotolerant Nostoc muscorum-R strain isolated from rice fields and ARM-221 strain. Indian J Exp Biol 35:746–750

    CAS  Google Scholar 

  • Gollerbach MM, Novichkova LN, Sdubrikova NV (1956) The algae of takyrs. In: Takyrs of Western Turkmenia and routes of their agricultural conquest. Izd AN SSSR, Moscow, pp 610–635

    Google Scholar 

  • Gopalaswamy G, Karthikeyan CV, Raghu R, Udayasuriyan V, Apte SK (2007) Identification of acid-stress-tolerant proteins from promising cyanobacterial isolates. J Appl Phycol 19:631–639

    Article  CAS  Google Scholar 

  • Gupta RK, Abrol IP (1990) Salt affected soils: their reclamation and management for crop production. Adv Soil Sci 9:223–286

    Article  Google Scholar 

  • Hagemann M, Erdmann N (1994) Activation and pathway of glucosylglycerol synthesis in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 140:1427–1431

    Article  CAS  Google Scholar 

  • Hagemann M, Erdmann N (1997). Environmental stresses. In: Rai AK (ed) Cyanobacterial nitrogen metabolism and environmental biotechnology. Springer, Heidelberg; Narosa Publishing House, New Delhi, pp 156–221

    Google Scholar 

  • Hagemann M, Marin K (1999) Salt-induced sucrose accumulation is mediated by sucrose-phosphate-synthase in cyanobacteria. J Plant Physiol 155:424–430

    Article  CAS  Google Scholar 

  • Hagemann M, Effmert U, Kerstan T, Schoor A, Erdmann N (2001) Biochemical characterization of glucosylglycerol-phosphate synthase of Synechocystis sp. strain PCC 6803: comparison of crude, purified, and recombinant enzymes. Curr Microbiol 43:278–283

    Article  PubMed  CAS  Google Scholar 

  • Hagemann M, Erdmann N, Wittenberg E (1987) Synthesis of glucosylglycerol in salt stressed cells of the cyanobacterium Microcystis firma. Arch Microbiol 148:275–279

    Article  CAS  Google Scholar 

  • Hagemann M, Fulda S, Schubert H (1994) DNA, RNA, and protein synthesis in the cyanobacterium Synechocystis sp. PCC 6803 adapted to different salt concentrations. Curr Microbiol 28(4):201–207

    Article  CAS  Google Scholar 

  • Haroun SA, Hussein MH (2003) The promotive effect of algal biofertilizers on growth, protein pattern and some metabolic activities of Lupinus termis plants grown in siliceous soil. Asian J Plant Sci 2:944–951

    Article  Google Scholar 

  • Harper KT, Pendleton RL (1993) Cyanobacteria and cyanolichens: can they enhance availability of essential minerals for higher plants? Great Basin Nat 53:59–72

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hashem MA (2001) Role of blue-green algal inoculum for improving soil fertility and reclaiming salinity of soil. Research report. BARC Dhaka, Bangladesh, p 2

    Google Scholar 

  • Heefner DL, Harold FM (1982) ATP-driven sodium pump in Streptococcus faecalis. Proc Natl Acad Sci U S A 79(9):2798–2802

    Article  PubMed  CAS  Google Scholar 

  • Hengge-Aronis R (1993) Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell 72:165–168

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann L (1989) Algae of terrestrial habitats. Bot Rev 55:77–105

    Article  Google Scholar 

  • Holtmann G, Bakker EP, Uozumi N, Bremer E (2003) KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J Bacteriol 185:1289–1298

    Article  PubMed  CAS  Google Scholar 

  • Hu C, Zhang D, Huang Z, Liu Y (2003) The vertical micro distribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts. Plant Soil 257:97–111

    Article  CAS  Google Scholar 

  • Huang F, Fulda S, Hagemann M, Norling B (2006) Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC 6803. Proteomics 6(3):910–920

    Article  PubMed  CAS  Google Scholar 

  • Hufleijt M, Tremolieres A, Pineau B, Lang J, Hatheway J, Packer L (1990) Changes in membrane lipid composition during saline growth of the fresh water cyanobacterium Synechococcus 6311. Plant Physiol 94:1512–1521

    Article  Google Scholar 

  • Ishitani M, Nakamura T, Han SY, Takabe T (1995) Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Biol 27:307–315

    Article  PubMed  CAS  Google Scholar 

  • Iyer V, Fernandes TA, Apte SK (1994) A role of osmotic stress-induced proteins in the osmotolerance of a nitrogen-fixing cyanobacterium Anabaena sp. strain L-31. J Bacteriol 176:5868–5870

    PubMed  CAS  Google Scholar 

  • Jeffries DL, Link SO, Klopatek JM (1993a) CO2 fluxes of cryptogamic crusts. I Response to resaturation. New Phytol 125:163–174

    Article  CAS  Google Scholar 

  • Jeffries DL, Link SO, Klopatek JM (1993b) CO2 fluxes of cryptogamic crusts II. Response to dehydration. New Phytol 125:391–396

    Article  CAS  Google Scholar 

  • Jha MN, Kaushik BD (1988) Response of Westiellopsis prolifica and Anabaena sp. to salt stress II. Uptake of Na+ in the presence of K+ as chloride, nitrate and phosphate. Curr Sci 57:667–668

    CAS  Google Scholar 

  • Jha MN, Venkataraman GS, Kaushik BD (1987) Response of Westiellopsis prolifica and Anabaena sp. to salt stress. Mircen J 3:99–103

    Article  Google Scholar 

  • Joset F, Jeanjean R, Hagemann M (1996) Dynamics of response of cyanobacteria to salt stress: deciphering the molecular events. Physiol Plant 96:738–744

    Article  CAS  Google Scholar 

  • Kamada Y, Jung US, Piotrowski J, Levin DE (1995) The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev 9:1559–1571

    Article  PubMed  CAS  Google Scholar 

  • Kanesaki Y, Suzuki I, Allakhverdiev SI, Mikami K, Murata N (2002) Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 290:339–348

    Article  PubMed  CAS  Google Scholar 

  • Kannaiyan S (1990) Biotechnology of biofertilizer for rice crop. TNAU, Coimbatore, Tamil Nadu, India, p 212

    Google Scholar 

  • Kannaiyan S, Kumar K, Pandiyarajan P (1992) The use of saline tolerance cyanobacteria for salt affected lands. In: Proceedings of the international symposium on strategies for utilizing salt affected lands. Bangkok, Thailand, pp 394–404.

    Google Scholar 

  • Karandashova I, Elanskaya I, Marin K, Vinnemeier J, Hagemann M (2002) Identification of genes essential for growth at high salt concentrations using salt-sensitive mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Curr Microbiol 44:184–188

    Article  PubMed  CAS  Google Scholar 

  • Kashyap AK, Pandey KD, Sarkar S (1996) Enhanced hydrogen photoproduction by non-heterocystous cyanobacterium Plectonema boryanum. Int J Hydrogen Energy 21:107–109

    Article  CAS  Google Scholar 

  • Kates M, Pugh EL, Ferrante G (1984) Regulation of membrane fluidity by lipids desaturases. Biomembranes 12:379–395

    CAS  Google Scholar 

  • Kaushik BD (1989) Reclamative potential of cyanobacteria in salt-affected soils. Phykos 28:101–109

    CAS  Google Scholar 

  • Kaushik BD (1994) Algalization of rice in salt-affected soils. Ann Agric Res 14:105–106

    Google Scholar 

  • Kaushik BD (2005). Reclamation of salt affected soil through cyanobacteria. In: Advances in microbiology at IARI 1961–2004, pp 160

    Google Scholar 

  • Kaushik BD, Krishnamurti GSR (1981) Effect of blue-green algae and gypsum application on physico-chemical properties of alkali soils. Phykos 20:91–94

    Google Scholar 

  • Kaushik BD, Nagar AP (1993) Sodium uptake by halotolerant Westiellopsis prolifica in presence of K, Ca, Mg, Fe and Li. Indian J Microbiol 33:93–96

    Google Scholar 

  • Kaushik BD, Subhashini D (1985) Amelioration of salt affected soils with blue green algae II. Improvement in soil properties. Proc Indian Nat Sci Acad B51:386–389

    Google Scholar 

  • Kaushik BD, Krishnamurti GSR, Venkataraman GS (1981) Influence of blue-green algae on saline alkali soils. Sci Cult 47:169–170

    Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    Article  PubMed  CAS  Google Scholar 

  • Keurson GW, Miernyk JA, Budd K (1984) Evidence for the occurrence of, and possible physiological role for, cyanobacterial calmodulin. Plant Physiol 75:222–224

    Article  Google Scholar 

  • Khamutov G, Fry IV, Hufleizt ME, Packer L (1990) Membrane lipid composition, fluidity and surface change in response to growth of the freshwater cyanobacterium Synechococcus 6311 under high salinity. Arch Biochem Biophys 277:263–267

    Article  Google Scholar 

  • Khan ZUM, Tahmida Begum ZN, Mandal R, Hossain R (1994) Cyanobacteria in rice soils. World J Microbiol Biotechnol 10:296–298

    Article  Google Scholar 

  • Khummongkol D, Canterford GS, Fryer C (1982) Accumulation of heavy metals in unicellular algae. Biotechnol Bioeng 24:2643–2660

    Article  PubMed  CAS  Google Scholar 

  • Komarek J (1998) Studies on the cyanophytes of Cuba. Folia Glo-Bot Phytotaxon 30:81–90

    Article  Google Scholar 

  • Kratz WA, Myers J (1955) Photosynthesis and respiration of three blue-green algae. Plant Physiol 30:275–280

    Article  PubMed  CAS  Google Scholar 

  • Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht UC, Soll J, Westhoff P (2001) VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Natl Acad Sci U S A 98(7):4238–4242

    Article  PubMed  CAS  Google Scholar 

  • Krulwich TA (1983) Na+/H+ antiporters. Biochim Biophys Acta 726(4):245–264

    Article  PubMed  CAS  Google Scholar 

  • Krulwich TA, Guffanti AA (1989) The Na+ cycle of extreme alkalophiles: a secondary Na+/H+ antiporter and Na+/ solute symporters. J Bioenerg Biomembr 21:663–677

    Article  PubMed  CAS  Google Scholar 

  • Ladha JK, Reddy PM (1995) Extension of nitrogen fixation to rice: necessity and possibilities. Geol J 35:363–372

    Google Scholar 

  • Lange OL, Meyer A, Zellner H, Heber U (1994) Photosynthesis and water relations of lichen soil-crusts: field measurements in the coastal fog zone of the Namib Desert. Funct Ecol 8:253–264

    Article  Google Scholar 

  • Lange W (1974) Chelating agents and blue-green algae. Can J Microbiol 20:1311–1321

    Article  CAS  Google Scholar 

  • Lockau W, Pfeffer S (1983) ATP-dependent calcium transport in membrane vesicles of the cyanobacterium, Anabaena variabilis. Biochim Biophys Acta 733:124–132

    Article  CAS  Google Scholar 

  • Mackay MA, Horton RS, Borowitzka LJ (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130:2177–2191

    CAS  Google Scholar 

  • Mackay MA, Norton RS, Borowitzka LJ (1983) Marine blue-green algae have a unique osmoregulatory system. Mar Biol 73:301–307

    Article  CAS  Google Scholar 

  • Malam IO, Le Bissonnais Y, Defarge C, Trichet J (2001a) Role of a microbial cover on structural stability of a sandy soil in Sahelian part of western Niger. Geoderma 101:15–30

    Article  Google Scholar 

  • Malam IO, Stal JL, Defarge C, Coute A, Trichet J (2001b) Nitrogen fixation by microbial crusts from desiccated Sahelian soils (Niger). Soil Biol Biochem 33:1425–1428

    Article  Google Scholar 

  • Malam Issa O, Défarge C, Bissonnais LY, Marin B, Duval O, Bruand A, D’Acqui LP, Nordenberg S, Annerman M (2007) Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant Soil 290:209–219

    Article  CAS  Google Scholar 

  • Mandal B, Vlek PLG, Mandal LN (1998) Beneficial effect of blue green algae and Azolla excluding supplying nitrogen, on wetland rice fields: a review. Biol Fertil Soils 27:329–342

    Google Scholar 

  • Marin K, Huckauf J, Fulda S, Hagemann M (2002) Salt-dependent expression of glucosylglycerol-phosphate synthase, involved in osmolyte synthesis in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 184:2870–2877

    Article  PubMed  CAS  Google Scholar 

  • Marin K, Kanesaki Y, Los DA, Murata N, Suzuki I, Hagemann M (2004) Gene expression profiling reflects physiological processes in salt acclimation of Synechocystis sp. strain PCC 6803. Plant Physiol 136(2):3290–3300

    Article  PubMed  CAS  Google Scholar 

  • Marin K, Suzuki I, Yamaguchi K, Ribbeck K, Yamamoto H, Kanesaki Y, Hagemann M, Murata N (2003) Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 6803. Proc Natl Acad Sci U S A 100:9061–9066

    Article  PubMed  CAS  Google Scholar 

  • Marin K, Zuther E, Kerstan T, Kunert A, Hagemann M (1998) The ggpS Gene from Synechocystis sp. Strain PCC 6803 encoding glucosyl-glycerol-phosphate synthase is involved in osmolyte synthesis. J Bacteriol 180:4843–4849

    PubMed  CAS  Google Scholar 

  • Matsuda N, Kobayashi H, Katoh H, Ogawa T, Futatsugi L, Nakamura T, Bakker PE, Uozumi N (2004) Na+-dependent K+ uptake Ktr system from the cyanobacterium Synechocystis sp. PCC 6803 and its role in the early phases of cell adaptation to hyperosmotic shock. The J of. Biol Chem 279(52):54952–54962

    Article  CAS  Google Scholar 

  • McLachlan J, Gorham PR (1961) Growth of Microcystis aeruginosa Kütz. in a precipitate-free medium buffered with Tris. Can J Microbiol 7:869–882

    Article  CAS  Google Scholar 

  • Metting B (1990) Microalgae applications in agriculture. Dev Ind Microbiol 31:265–270

    Google Scholar 

  • Miao X, Wu Q, Wu G, Zhao N (2003) Changes in photosynthesis and pigmentation in an agp deletion mutant of the cyanobacterium Synechocystis sp. Biotechnol Lett 25(5):391–396

    Article  PubMed  CAS  Google Scholar 

  • Mikami K, Kanesaki Y, Suzuki I, Murata N (2002) The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. PCC 6803. Mol Microbiol 46:905–915

    Article  PubMed  CAS  Google Scholar 

  • Mikkat S, Hagemann M (2000) Molecular analysis of the ggtBCD operon of Synechocystis sp. strain PCC 6803 encoding the substrate-binding protein and the transmembrane proteins of an ABC transporter for the osmoprotective compound glucosylglycerol. Arch Microbiol 174:273–282

    Article  PubMed  CAS  Google Scholar 

  • Mikkat S, Effmert U, Hagemann M (1997) Uptake and use of the osmoprotective compounds trehalose, glucosylglycerol, and sucrose by the cyanobacterium Synechocystis sp. PCC6803. Arch Microbiol 167:112–118

    Article  CAS  Google Scholar 

  • Mikkat S, Hagemann M, Schoor A (1996) Active transport of glucosylglycerol is involved in salt adaptation of the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiology 142:1725–1732

    Article  PubMed  CAS  Google Scholar 

  • Miller A (1976) The climate of Chile. In: Schwerdfeger W (ed) World survey of climatology: climate of Central and South America. Elsevier, Amsterdam, vol 12, pp 113–145

    Google Scholar 

  • Misra S, Kaushik BD (1989a) Growth promoting substances of cyanobacteria. I. Vitamins and their influence on rice plant. Proc Indian Natl Sci Acad B55:295–300

    Google Scholar 

  • Misra S, Kaushik BD (1989b) Idems. II. Detection of amino acids, sugars and auxins. Proc Indian Natl Sci Acad B55:499–504

    Google Scholar 

  • Mitra AK (1951) The algal flora of certain Indian soils. Indian J Agric Sci 21:357–373

    Google Scholar 

  • Mochizuki-Oda N, Oosawa F (1985) Amiloride-sensitive Na+/H+ antiporter in Escherichia coli. J Bacteriol 163:395–397

    PubMed  CAS  Google Scholar 

  • Morbach S, Kramer R (2002) Body shaping under water stress: osmosensing and osmoregulation of solute transport in bacteria. ChemBioChem 3:384–397

    Article  PubMed  CAS  Google Scholar 

  • Murvanidze GV, Glagolev AN (1982) Electrical nature of taxis signal in cyanobacteria. J Bacteriol 150:239–244

    PubMed  CAS  Google Scholar 

  • Nakamura T, Yokota S, Muramoto Y, Tsutsui K, Oguri Y, Fukui K, Takabe T (1997) Expression of a betaine aldehyde dehydrogenase gene in rice, a glycinebetaine non-accumulator, and possible localization of its protein in peroxisomes. Plant J 11:1115–1120

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Yuda R, Unemoto T, Bakker EP (1998) KtrAB, a new type of bacterial K+ uptake system from Vibrio alginolyticus. J Bacteriol 180:3491–3494

    PubMed  CAS  Google Scholar 

  • Nelson DE, Shen B, Bohnert HJ (1998). Salinity tolerance mechanisms, models and the metabolic engineering of complex traits. In: Setlow J (ed) Genetic engineering, principles and methods, vol. 20. Plenum Press, New York, pp 153–176

    Google Scholar 

  • Nisha R, Kaushik A, Kaushik CP (2007) Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma 138:49–56

    Article  CAS  Google Scholar 

  • Norris PR, Kelly DP (1977) Accumulation of cadmium and cobalt by Saccharomyces cerevisiae. J Gen Microbiol 99:317–324

    CAS  Google Scholar 

  • Nystrom T, Neidhardt FC (1993) Isolation and properties of a mutant of Escherichia coli with an insertional inactivation of the uspA gene, which encodes a universal protein. J Bacteriol 175:3949–3956

    PubMed  CAS  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    PubMed  CAS  Google Scholar 

  • Padan E, Schuldiner S (1994) Molecular physiology of Na+/H+ antiporters, key transporters in circulation of Na+ and H+ in cells. Biochim Biophys Acta 1185:129–151

    Article  PubMed  CAS  Google Scholar 

  • Padan E, Schuldiner S (1996) Bacterial Na+/H+ antiporters: molecular biology, biochemistry, and physiology. In: Konings WN, Kaback HR, Lolkema JS (eds) Handbook of biological physics. Elsevier Science, Amsterdam, Netherlands, pp 501–531

    Google Scholar 

  • Pandey KD, Shukla PN, Giri DD, Kashyap AK (2005) Cyanobacteria in alkaline soil and the effect of cyanobacteria inoculation with pyrite amendments on their reclamation. Biol Fertil Soils 41:451–457

    Article  Google Scholar 

  • Pandey PK, Singh SP (1993) Hg+2 uptake in a cyanobacterium. Curr Microbiol 26:155–159

    Article  CAS  Google Scholar 

  • Pandey PK, Singh BB, Mishra R, Bisen PS (1996) Ca+2 uptake and its regulation in the cyanobacterium Nostoc MAC. Curr Microbiol 32:332–335

    Article  PubMed  CAS  Google Scholar 

  • Pandhal J, Snijders APL, Wright PC, Biggs CA (2008) A cross-species quantitative proteomic study of salt adaptation in a halotolerant environmental isolate using 15N metabolic labelling. Proteomics 8:2266–2284

    Article  PubMed  CAS  Google Scholar 

  • Paschinger H (1977) DCCD induced sodium uptake by Anacystis nidulans. Arch Microbiol 113:285–291

    Article  PubMed  CAS  Google Scholar 

  • Pendleton RL, Warren SD (1995) Effects of cryptobiotic soil crusts and VA mycorrhizal inoculation on growth of five rangeland plant species. In: West NE (ed) Proceedings of the fifth international rangeland congress. Society for Range Management, Salt Lake City, UT, pp 436–437

    Google Scholar 

  • Pettersson A, Hallbom L, Bergman B (1986) Aluminium uptake by Anabaena cylindrica. J Gen Microbiol 132:1771–1774

    CAS  Google Scholar 

  • Piccioni RG, Mauzerall DC (1978) Calcium and photosynthetic oxygen evolution in cyanobacteria. Biochim Biophys Acta 504:384–397

    Article  PubMed  CAS  Google Scholar 

  • Pinner E, Padan E, Schuldiner S (1992) Cloning, sequencing, and expression of the nhaB gene, encoding a Na+/H+ antiporter in Escherichia coli. J Biol Chem 267:11064–11068

    PubMed  CAS  Google Scholar 

  • Prabu PC, Udayasoorian C (2007) Native cyanobacteria Westiellopsis (TL-2) sp for reclaiming paper mill effluent polluted saline sodic soil habitat of India. EJEAFChe 6(2):1775–1786

    CAS  Google Scholar 

  • Rai LC, Singh S, Pradhan S (1998) Biotechnological potential of naturally occurring and laboratory grown Microcystis in biosorption of Ni+2 and Cd+2. Curr Sci 74:461–463

    CAS  Google Scholar 

  • Rao DLN, Burns RG (1990) The effect of surface growth of blue-green algae and bryophytes on some microbiological, biochemical, and physical soil properties. Biol Fertil Soils 9:239–244

    Article  CAS  Google Scholar 

  • Record MT Jr, Courtenay ES, Cayley DS, Guttman HJ (1998) Responses of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. Trends Biochem Sci 23:143–148

    Article  PubMed  CAS  Google Scholar 

  • Reddy BR, Apte SK, Thomas J (1989) Enhancement of cyanobacterial salt tolerance by combined nitrogen. Plant Physiol 89:204–210

    Article  PubMed  CAS  Google Scholar 

  • Reed RH, Stewart WDP (1988) The responses of cyanobacteria to salt stress. In: Rogers JRG LJ (ed) Biochemistry of the algae and cyanobacteria. Oxford Science, Oxford, pp 217–231

    Google Scholar 

  • Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Foster R, Warr SRC, Moore DJ, Stewart WDP (1986) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol Lett 39(1–2):51–56

    Article  CAS  Google Scholar 

  • Reed RH, Chudek JA, Foster R, Stewart WDP (1984) Osmotic adjustments in cyanobacteria from hypersaline environments. Arch Microbiol 138:333–337

    Article  CAS  Google Scholar 

  • Reed RH, Richardson DL, Stewart WDP (1985) Na+ uptake and extrusion in the cyanobacterium Synechocystis PCC 6714 in response to hypersaline treatment. Evidence for transient changes in plasmalemma Na+ permeability. Biochim Biophys Acta 814:347–355

    Article  CAS  Google Scholar 

  • Reed RH, Stewart WDP (1985) Evidence for turgor sensitive K+ influx in cyanobacteria Anabaena variabilis ATCC 29413 and Synechocystis PCC 6714. Biochim Biophys Acta 812:155–162

    Article  CAS  Google Scholar 

  • Resch CM, Gibson J (1983) Isolation of the carotenoid-containing cell wall of three unicellular cyanobacteria. J Bacteriol 155:345–350

    PubMed  CAS  Google Scholar 

  • Ritter D, Yopp JH (1993) Plasma membrane lipid composition of the halophilic cyanobacterium Aphanothece halophytica. Arch Microbiol 159:435–439

    Article  CAS  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 2005:1–5

    Google Scholar 

  • Rodríguez AA, Stella AM, Storni MM, Zulpa G, Zaccaro MC (2006) Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Syst 2:7. doi:10.1186/1746-1448-2-7

    Article  PubMed  CAS  Google Scholar 

  • Roger PA (1996) Biology and management of the floodwater ecosystem in rice fields. IRRI, Manila, pp 229–243

    Google Scholar 

  • Roger PA, Kulasooriya SA (1980) Blue green algae and rice. The International Rice Research Institute, Manila, Philippines, p 112

    Google Scholar 

  • Rogers SL, Burns RG (1994) Changes in aggregate stability nutrient status, indigenous microbial populations, and seedling emergence following inoculation of soil with Nostoc muscorum. Biol Fert Soils 18:209–215

    Article  Google Scholar 

  • Rosen BP (1982) Calcium transport in microorganisms. In: Carafoli E (ed) Membrane transport of calcium. Academic, London, pp 187–216

    Google Scholar 

  • Roychoudhury P, Kaushik BD (1989) Solubilization of Mussorie rock phosphate by cyanobacteria. Curr Sci 58:569–570

    CAS  Google Scholar 

  • Roychoudhury P, Kaushik BD, Venkataraman GS (1985) Response of Tolypothrix ceylonica to sodium stress. Curr Sci 54:1181–1183

    CAS  Google Scholar 

  • Sardeshpande JS, Goyal SK (1981) Distributional pattern of blue green algae in rice field soils of Konkan region of Maharashtra State. Phykos 20:102–106

    Google Scholar 

  • Saxena S, Kaushik BD (1992) Polysaccharides (biopolymers) from halotolerant cyanobacteria. Indian J Exp Biol 30:433–434

    CAS  Google Scholar 

  • Shehata FHA, Whitton BA (1982) Zinc tolerance in strains of blue-green alga Anacystis nidulans. Br Phycol J 17:5–12

    Article  Google Scholar 

  • Shields LM, Durrell LW (1964) Algae in relation to soil fertility. Bot Rev 30:92–128

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    Article  PubMed  CAS  Google Scholar 

  • Shoumskaya MA, Paithoonrangsarid K, Kanesaki Y, Los DA, Zinchenko VV, Tanticharoen M, Suzuki I, Murata N (2005) Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in Synechocystis. J Biol Chem 280(22):21531–8

    Article  PubMed  CAS  Google Scholar 

  • Singh DP (1985) Cu+2 transport in the unicellular cyanobacterium Anacystis nidulans. J Gen Appl Microbiol 31:277–284

    Article  CAS  Google Scholar 

  • Singh NK, Dhar DW (2006) Sewage effluent: a potential nutrient source for microalgae. Proc Indian Natl Sci Acad 72:113–120

    CAS  Google Scholar 

  • Singh NK, Dhar DW (2007) Nitrogen and phosphorous scavenging potential in microalgae. Indian J Biotechnol 6:52–56

    CAS  Google Scholar 

  • Singh PK, Bisoyi RN (1993) Biofertilizers for restoration of soil fertility. In: Singh JS (ed) Restoration of degraded land: concept and strategies. Rastogi, Meerut, pp 25–47

    Google Scholar 

  • Singh RN (1950) Reclamation of “Usar” lands in India through blue-green algae. Nature 165:325–326

    Article  Google Scholar 

  • Singh RN (1961) Role of blue-green algae in nitrogen economy of Indian agriculture. Indian Council of Agricultural Research, New Delhi, p 175

    Google Scholar 

  • Singh SC, Sinha RP, Hader DP (2002) Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozool 41:297–308

    CAS  Google Scholar 

  • Singh SP (1978) Succession of blue green algae on certain sites near Varanasi. Indian J Microbiol 18:128–130

    Google Scholar 

  • Singh SP, Yadav V (1985) Cadmium uptake in Anacystis nidulans, effect of modifying factor. J Gen Appl Microbiol 31:39–48

    Article  CAS  Google Scholar 

  • Smith RJ, Hobson S, Ellis I (1987) Evidence for calcium mediated regulation of heterocyst frequency and nitrogenase activity in Nostoc 6720. New Phytol 105:531–541

    Article  CAS  Google Scholar 

  • Sprott GD, Shaw KM, Jarell KF (1984) Ammonia/potassium exchange in methanogenic bacteria. J Biol Chem 259:12602–12608

    PubMed  CAS  Google Scholar 

  • Stal L (2007) Cyanobacteria. Algae and cyanobacteria in extreme environments 11:659–680

    Article  Google Scholar 

  • Stumpe S, Schlosser A, Schleyer M, Bakker EP (1996) K+ circulation across the prokaryotic cell membrane: K+ uptake systems. In: Konings WN, Kaback HR, Lolkema JS (eds) Handbook of biological physics. Elsevier Science BV, Amsterdam, pp 473–499

    Google Scholar 

  • Subhashini D, Kaushik BD (1981) Amelioration of sodic soils with blue-green algae. Aust J Soil Res 19:361–366

    Article  Google Scholar 

  • Subhashini D, Kaushik BD (1982) Nitrogen fixing potential of blue-green algae from saline and alkali soils. Acta Bot Indica 10:321–322

    Google Scholar 

  • Subhashini D, Kaushik BD (1984) Amelioration of salt affected soils with blue green algae. I. Influence of algalization on the properties of saline-alkali soils. Phykos 23:273–277

    Google Scholar 

  • Suput D (1984) Effect of external ammonium on the kinetics of the sodium current in frog muscle. Biochim Biophys Acta 771:1–8

    Article  PubMed  CAS  Google Scholar 

  • Suzuki I, Los DA, Kanesaki Y, Mikami K, Murata N (2000) The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J 19:1327–1334

    Article  PubMed  CAS  Google Scholar 

  • Szabolcs I (1979) Review of research on salt affected soils. Nat Resour Res 28:313–324. UNESCO, Paris

    CAS  Google Scholar 

  • Szabolcs I (1993) Soils and salinaization. In: Pessarakli M (ed) Handbook of plant and crop stress, vol 32. Marcel Dekker, New York, pp 344–346

    Google Scholar 

  • Tang D, Shi S, Li D, Hu C, Liu Y (2007) Physiological and biochemical responses of Scytonema javanicum (cyanobacterium) to salt stress. J Arid Environ 71(3):312–320

    Article  Google Scholar 

  • Tasaka Y, Gombos Z, Nishiyama Y, Mohanty P, Ohba T, Okhi K, Murata N (1996) Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis. EMBO J 15:6416–6425

    PubMed  CAS  Google Scholar 

  • Thomas J (1978) Dinitrogen fixation by blue-green algae from paddy fields. In: Proceedings of an advisory group meeting, isotopes of biological dinitrogen fixation. International Atomic Energy Agency, Vienna, pp 89–103

    Google Scholar 

  • Thomas J, Apte SK (1984) Sodium requirement and metabolism in nitrogen-fixing cyanobacteria. J Biosci 6:771–794

    Article  CAS  Google Scholar 

  • Tisa LS, Adler J (1995) Cytoplasmic free-Ca+2 level rises with repellents and falls with attractants in Escherichia coli chemotaxis. Proc Natl Acad Sci U S A 92:10777–10781

    Article  PubMed  CAS  Google Scholar 

  • Tisa LS, Olivera BM, Adler J (1993) Inhibition of Escherichia coli chemotaxis by v-conotoxin, a calcium ion channel blocker. J Bacteriol 175:1235–1238

    PubMed  CAS  Google Scholar 

  • Vaishampayan A, Sinha RP, Hader DP, Dey T, Gupta AK, Bhan U, Rao AL (2001) Cyanobacterial biofertilizers in rice agriculture. Bot Rev 6:453–516

    Article  Google Scholar 

  • Venkataraman GS (1975) The role of blue green algae in tropical rice cultivation. In: Stewart WDP (ed) Nitrogen fixation by free-living microorganisms. Cambridge University Press, London, pp 207–268

    Google Scholar 

  • Venkataraman GS (1979). Algal inoculation of rice fields. In: Nitrogen and rice. International Rice Res. Institute, Los Banos, Philippines, pp 311–321

    Google Scholar 

  • Venkataraman GS (1981) Blue-green algae for rice production – a manual for its promotion. FAO Soils bulletin no. 46. FAO, Rome, p 102

    Google Scholar 

  • Verma KS, Abrol IP (1980) Effect of gypsum and pyrite on soil properties in a highly sodic soil. Indian J Agric Sci 50:844–851

    CAS  Google Scholar 

  • Verma SK, Singh SP (1990) Factors regulating copper uptake in cyanobacterium. Curr Microbiol 21:33–37

    Article  CAS  Google Scholar 

  • Villbrandt M, Stal LJ (1996) The effect of sulfide on nitrogen fixation in heterocystous and non-heterocystous cyanobacterial mat communities. Algol Stud 83:549–563

    Google Scholar 

  • Vinnemeier J, Kunert A, Hagemann M (1998) Transcriptional analysis of the isiAB operon in salt-stressed cells of the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 169:323–330

    Article  PubMed  CAS  Google Scholar 

  • Volker U, Engelmann S, Maul RS, Volker A, Schmid R, Mach H, Hecker M (1994) Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 140:741–752

    Article  PubMed  Google Scholar 

  • Waditee R, Hibino T, Nakamura T, Incharoensakdi A, Takabe T (2002) Overexpression of Na+/H+ antiporter confers salt tolerance on a fresh water cyanobacterium, making it capable of growth in sea water. Proc Natl Acad Sci U S A 99:4109–4114

    Article  PubMed  CAS  Google Scholar 

  • Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Takabe T (2001) Halotolerant cyanobacterium Aphanothece halophytica contains a Na+/H+ antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail. J Biol Chem 276:36931–36938

    Article  PubMed  CAS  Google Scholar 

  • Watanabe I, Lee KK, Alimagno BV, Sato M, Del Rosario DC, De Guzman MR (1977) Biological N2-fixation in paddy field studied by in-situ acetylene reduction assay. Int Rice Res Inst Res Pap Ser 3:1–16

    CAS  Google Scholar 

  • Whatmore AM, Reed RH (1990) Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. J Gen Microbiol 136(12):2521–2526

    PubMed  CAS  Google Scholar 

  • Whatmore AM, Chudek JA, Reed RH (1990) The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol 136:2527–2535

    PubMed  CAS  Google Scholar 

  • Whitton BA (2000) Soils and rice fields. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, The Netherlands, pp 233–255

    Google Scholar 

  • Whitton BA, Potts M (2000) The ecology of cyanobacteria, their diversity in time and space. Kluwer, Dordrecht, The Netherlands, p 669

    Google Scholar 

  • Wiangnon K, Raksajit W, Incharoensakdi A (2007) Presence of a Na+-stimulated P-type ATPase in the plasma membrane of the alkaliphilic halotolerant cyanobacterium Aphanothece halophytica. FEMS Microbiol Lett 270(1):139–45

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson MJ, Northcote DH (1980) Plasma membrane ultrastructure during plant protoplast plasmolysis, isolation and wall regeneration: a freeze-fracture study. J Cell Sci 42(1):401–415

    PubMed  CAS  Google Scholar 

  • Womack BJ, Gilmore DF, White D (1989) Calcium requirement for gliding motility in myxobacteria. J Bacteriol 171:6093–6096

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the assistance provided by the Department of Microbiology, C.P. College of Agriculture (SDAU, S. K. Nagar) and the Department of Microbiology, Indian Agricultural Research Institute, New Delhi for preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirbhay Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Singh, N.K., Dhar, D.W. (2010). Cyanobacterial Reclamation of Salt-Affected Soil. In: Lichtfouse, E. (eds) Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming. Sustainable Agriculture Reviews, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8741-6_9

Download citation

Publish with us

Policies and ethics