Fine Root Systems and Mycorrhizal Associations in Two Central Amazonian Inundation Forests: Igapó and Várzea

  • Ulrike MeyerEmail author
  • Wolfgang J. Junk
  • Christine Linck
Part of the Ecological Studies book series (ECOLSTUD, volume 210)


Fine root systems and mycorrhizal associations were examined in the central Amazonian várzea and igapó floodplain forests. While the várzea forest is located on fertile soil, infertile soil conditions prevail in the igapó region. Quantitative root analyses comprised of fine root length density within 8.5 cm soil depth (as a measure of root concentration) and fine root production rate within 43 cm soil depth. Fine root branching patterns and root symbioses with arbuscular/ endomycorrhiza (AM) or ectomycorrhiza (EM) were determined qualitatively. Fine root systems showed marked differences between the forest types. Fine root length densities, for both living and dead roots, were higher in the igapó as compared to the várzea. In spite of the greater fine root concentration within the topsoil, the fine root production rate was lower in the igapó relative to the várzea. It therefore appears that root longevity was greater and dead root decomposition lower in the igapó than in the várzea. While the majority of fine roots were concentrated within the surface horizon of the igapó, they extended to greater soil depth (43 cm) in the várzea. Root branching was charac­terised by higher ‘numbers of short roots’ in the igapó, while the ‘relative total root lengths’ were much higher in the várzea. In general, igapó roots were better equipped to retain nutrients within the soil-plant ecosystem through greater root concentration, greater root longevity and more intensive branching. Both forests associated predominantly with AM. EM symbiosis was only detected on Aldina latifolia in the igapó. The proposal by Singer and Araujo (1986) that the igapó forest should be viewed as an ectotrophic forest could not be confirmed by this study, as most of the tree species were symbiotically associated with the AM-type in both forests.


Tree Species Fine Root Soil Depth Root Length Density Short Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author (Dr. U. Meyer) is grateful to Prof. Dr. Ulrich Babel of the Universität Hohenheim for the supervision of this study. This study was funded by the Deutsche Forschungsgemeinschaft, the Max-Plank Institute of Limnology and the Instituto Nacional de Pesquisas da Amazonia (INPA, Manaus). The plant species composition was determined by Mr. J. Revilla and L. Coehlo.


  1. Alexander IJ (1989) Mycorrhizas in tropical forests. In: Proctor J (ed) Mineral nutrition in tropical forest and Savanna ecosystems. Blackwell Scientific, Oxford, pp 169–188Google Scholar
  2. Alexander IJ, Höberg P (1986) Ectomycorrhizas of tropical angiospermous trees. New Phytol 102:541–549CrossRefGoogle Scholar
  3. Anderson JM, Swift MJ (1983) Decomposition in tropical forests. In: Sutton SL, Whitemore TC, Chadwick AC (eds) Tropical rain forest: ecology and management. Blackwell Scientific, Oxford, pp 287–309Google Scholar
  4. Babel U (1971) Gliederung und Beschreibung des Humusprofils in mitteleuropäischen Wäldern. Geoderma 5:297–324CrossRefGoogle Scholar
  5. Babel U (1979) Erfassung von Humusprofilmerkmalen mit Hilfe von Anschliffen. Zeitschr Pflanzenernährung Bodenkunde 142:195–205CrossRefGoogle Scholar
  6. Blair BC, Perfecto I (2001) Nutrient content and substrate effect on fine root density and size distribution in a Nicaraguan rain forest. Biotropica 33(4):697–701Google Scholar
  7. Chapin FSIII, van Cleve K (1981) Plant nutrition adsorption and retention under differing fire regimes. In: Fire regimes and ecosystem properties. United States Forest Service Technical Report WO 26, pp 301–321Google Scholar
  8. Cromack K, Sollins P, Graunstein WC, Speidel K, Todd WA, Spycher G, Y-Li C, Todd RL (1979) Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biol Biochem 11:463–468CrossRefGoogle Scholar
  9. da Silvia GA, dos Santos BA, Alves MV, Maia LC (2001) Arbuscular mycorrhiza in species of Commelinidae (Liliopsida) in the State of Pernambuco (Brazil). Acta bot bras 15(2):155–165CrossRefGoogle Scholar
  10. Fischer WR, Flessa H, Schaller G (1989) pH values and redox potential in microsites of the rhizosphere. Zeitschrift Pflanzenernährung Bodenkunde 152:191–195CrossRefGoogle Scholar
  11. Fittkau EJ (1982) Struktur, Funktion und Diversität zentralamazonischer Ökosysteme. Arch Hydrobiol 95(1/4):29–45Google Scholar
  12. Furch K (1997) Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecolog Stud 126:47–68. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  13. Furch K (2000) Chemistry and bioelement inventory of contrasting Amazonian forest soils. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) The Central Amazon floodplain: actual use and options for a sustainable management. Backhuys, Leiden, pp 109–128Google Scholar
  14. Furch K, Junk WJ (1997a) Physicochemical conditions in floodplains. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecolog Stud 126:69–108. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  15. Gardner WK, Barber DA, Parbery DG (1983a) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil 70:107–114CrossRefGoogle Scholar
  16. Gardner WK, Barber DA, Parbery DG (1983b) The acquisition of phosphorus by Lupinus albus L V. The diffusion of exudates away from roots: a computer simulation. Plant Soil 72:13–29CrossRefGoogle Scholar
  17. Haase K, Rätsch G (this volume) The morphology and anatomy of tree roots and their aeration strategies. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  18. Hansen A-C, Steen E (1984) Methods of calculating root production and nitrogen uptake in an annual crop. Swed J Agr Res 14:191–200Google Scholar
  19. Högberg P, Piearce GP (1986) Mycorrhizas in Zambian trees in relation to host taxonomy, vegetation communities and successional patterns. J Ecol 74:775–785CrossRefGoogle Scholar
  20. Irion G, Adis J, Junk W, Wunderlich F (1984) Sedimentaufbau einer Amazonas-Insel. Natur und Museum 114(1):1–13Google Scholar
  21. Jackson RM, Mason PA (1984) Mycorrhiza. The institute of biology’s studies in biology, p 59. E Arnold Publications, LondonGoogle Scholar
  22. Janos DP (1983) Tropical mycorrhizas, nutrient cycles and plant growth. In: Sutton SL, Whitemore TC, Chadwick AC (eds) Tropical rain forest: ecology and management. Blackwell Scientific, Oxford, pp 327–345Google Scholar
  23. Junk WJ, Barley PB, Sparks RE (1989) The flood-pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127Google Scholar
  24. Junk WJ, Furch K (1985) The physical and chemical properties of Amazonian waters and their relationship with the biota. In: Prance GT, Lovejoy T (eds) Amazonia: key environments. Pergamon Press, Oxford, pp 3–17Google Scholar
  25. Junk WJ, Piedade MTF (this volume) An introduction to SouthAmerican wetland forests: distribution, definitions and general characterization. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  26. Klinge H, Ohle W (1964) Chemical properties of rivers in the Amazonian area in relation to soil conditions. Verh Int Ver Limn XV:1067–1076Google Scholar
  27. Kottke I (1986) Wurzelentwicklung und Wachstum der Fichte (Picea abies L.H. Karsten) auf unterschiedlichen Böden und künstlichen Substraten. In: Einsele G (ed) Das landschaftsökologische Forschungsprojekt Naturpark Schönbuch. Wasser- und Stoffhaushalt, Bio- Geo- und Forstwirtschaftliche Studien in Südwestdeutschland, VCH, Weinheim, pp 443–462Google Scholar
  28. Laclau JP, Toutain F, M’Bou AT, Arnoud M, Joffre R, Ranger J (2004) The function of the superficial root mat in the biochemical cycles of nutrients in Congolese Eucalyptus plantations. Ann Bot 93:249–261PubMedCrossRefGoogle Scholar
  29. Malloch DW, Pirozynski KA, Raven PH (1980) Ecological and evolutionary significance of mycorrhizal symbiosis in vascular plants (a review). Proc Nat Acad Sci USA 77:2113–2118PubMedCrossRefGoogle Scholar
  30. Meyer FH (1967) Feinwurzelverteilung bei Waldbäumen in Abhängigkeit vom Substrat. Forstarchiv 38:286–290Google Scholar
  31. Meyer U (1991) Feinwurzelsysteme und Mykorrhizatypen als Anpassungsmechanismen in zentralamazonischen Überschwemmungswäldern- Igapó and Várzea. Ph.D. thesis, University of Hohenheim, GermanyGoogle Scholar
  32. Moyersoen B, Becker P, Alexander IJ (2001) Are ectomycorrhizas more abundant than arbuscular mycorrhizas in tropical heath forests? New Phytol 150:591–599CrossRefGoogle Scholar
  33. Nadelhoffer KJ, Aber JD, Melillo JM (1985) Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. Ecology 66(4):1377–1390CrossRefGoogle Scholar
  34. Parolin P, Wittmann F, Schöngart J (this volume c) Tree phenology in Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  35. Paz H (2003) Root/shoot allocation and root architecture in Seedlings: variation among forest sites, microhabitats and ecological groups. Biotropica 35(3):318–332Google Scholar
  36. Phillips LM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and VA-Mycorrhiza fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160CrossRefGoogle Scholar
  37. Priess J, Then C, Fölster H (1999) Litter and fine root production in three types of tropical premontane rain forest in SE Venezuela. Plant Ecol 143:171–187CrossRefGoogle Scholar
  38. Redhead JF (1980) Mycorrhiza in natural tropical forests. In: Mikola P (ed) Tropical Mycorrhiza research. Clarendon Press, Oxford, pp 127–142Google Scholar
  39. Sayer EJ, Tanner EVJ, Cheesman AW (2006) Increased litterfall changes fine root distribution in a moist tropical forest. Plant Soil 281:5–13CrossRefGoogle Scholar
  40. Scherfose V (1990) Feinwurzelverteilung und Mykorrhizatypen von Pinus sylvestris in verschiedenen Bodentypen. Berichte des Forschungszentrums Waldökosysteme Göttingen, Reihe A, Bd 62, p 166Google Scholar
  41. Schlichting E, Blume H-P, Stahr K (1995) Bodenkundliches Praktikum, 2nd edn. Blackwell Wissenschaftsverlag, BerlinGoogle Scholar
  42. Schlüter U-B (1989) Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz zweier charakteristischer Baumarten (Astrocaryum jauari und Macrolobium acaciaefolium) des Weiss- und Schwarz-wasserüberschwemmungswaldes bei Manaus.- ein Beitrag zur Ökosystemanalyse von Várzea und Igapó Zentralamazoniens. Ph.D. Thesis, University of Kiel, GermanyGoogle Scholar
  43. Singer R, Araujo I (1986) Litter decomposition and ectomycorrhizal Basidiomycetes in an igapó Forest. Pl Syst Evol 153:107–117CrossRefGoogle Scholar
  44. Szaniszlo PJ, Powell PE, Reid CPP, Cline GR (1981) Production of hydroxymate siderophore iron chelators by ectomycorrhizal fungi. Mycologica 73:1158–1178CrossRefGoogle Scholar
  45. Trappe JM, Fogel R (1977) Ecosystematic functions of mykorrhizae. In: Marschall JM (ed) The belowground ecosystem: a synthesis of plant-ssociated processes. Range Science Department Science Ser 26, Colorado State University, Fort Collins, Colorado, USA, pp 205–214Google Scholar
  46. Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572CrossRefGoogle Scholar
  47. Vogt KA, Grier CC, Gower ST, Sprugel DG, Vogt DJ (1986) Overestimation of net root production: a real or imaginary problem? Ecol 67(2):577–579CrossRefGoogle Scholar
  48. Weibel EW (1979) Stereological methods, vol 1: practical methods for biological morphometry, p 415. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ulrike Meyer
    • 1
    Email author
  • Wolfgang J. Junk
    • 2
  • Christine Linck
    • 3
  1. 1.Umweltkonzept Dr. Meyer, Soil consultancyBerlinGermany
  2. 2.State University of Amazonas (UEA), National Institute of Amazon Research (INPA)ManausBrazil
  3. 3.Working Group of Tropical EcologyMax-Planck-Institute for Evolutionary BiologyPlönGermany

Personalised recommendations