Biochemistry of Amazonian Floodplain Trees

  • Maria T. F. PiedadeEmail author
  • Cristiane S. Ferreira
  • Astrid de Oliveira Wittmann
  • Marcos Buckeridge
  • Pia Parolin
Part of the Ecological Studies book series (ECOLSTUD, volume 210)


Trees colonizing Central Amazonian floodplains are subjected to extended periods of waterlogging and submersion surviving up to seven months of flooding per year. Flood is a consequence of changes in water level of ca. 10 m in the largest rivers of the region, and leads to a fast depletion of oxygen in the soil modifying the metabolism of the plants. Flooding tolerance varies between species and ecotypes as well as the biochemical traits and processes allowing the survival and adaptation of plant species. This results in a typical substitution of plant communities in these environments according to the depth of inundation. Amongst the developed metabolic adjustments and growth strategies and adaptations plants may show wood-ring formation, indicating annual growth reduction related to the inundation phase. The reduction of growth is preceded by stomatal closing, degradation of leaf chlorophyll, decrease of photosynthetic rates, carbohydrate translocation, and alteration of the hormonal balance. Floodplain trees develop as well protection mechanisms which can diminish damages caused by the long lasting annual hypoxia or even anoxia. Although the majority of woody plants can support periods of anoxia varying between a few hours to some days, in non-adapted species, irreversible damages can be caused leading to the death of the roots, when longer periods of flooding are imposed. These damages are attributed to the accumulation of toxic end products of the anaerobic metabolism, the loss of metabolic energy or the lack of respiration substrate. All and all the adaptations described at the biochemical level for temperate tree species inhabiting wetland are found in Amazonian floodplain trees; however, they are not enough to explain plant survival. This indicates the existence of novel mechanisms still to be found which together with the fate of the tree species inhabiting Amazonian floodplains in a changing climate are the main challenges faced by wetland scientists in the near future.


Tree Species Adventitious Root Floodplain Forest Terra Firme Anaerobic Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by FAPEAM/CNPq – PRONEX “Tipologias Alagáveis”, by the INPA/Max-Planck Project and the SHIFT Program ENV-29 Project (CNPq-BMBF). The Instituto Nacional de Pesquisas da Amazônia provided logistic support. We acknowledge Celso Rabelo Costa and Valdeney Azevedo for technical assistance.


  1. Aidar MPM, Martinez CA, Costa AC, Costa PMF, Dietrich SMC, Buckeridge MS (2002) Effect of atmospheric CO2 enrichment on the establishment of seedlings of jatobá, Hymenaea courbaril L. (Leguminosae, Caesalpinioideae) Biota Neotropica 2(1).
  2. Ainsworth EA, Davey PA, Bernacch CJ, Dermody OC, Heaton EA, Moore DJ, Morgan PB, Naidu SL, Yoora HS, Zhu XG, Curtins P, Long SP (2002) A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology 8:695–709CrossRefGoogle Scholar
  3. Armstrong W, Drew MC (2002) Root growth and metabolism under oxygen deficiency. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 729–761Google Scholar
  4. Barrios E, Herrera R (1994) Nitrogen cycling in a Venezuelan tropical seasonally flooded forest: soil nitrogen mineralization and nitrification. J Trop Ecol 10:399–416CrossRefGoogle Scholar
  5. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress. Ann Bot 90:179–194CrossRefGoogle Scholar
  6. Buckeridge MS, Mortari LC, Machado MR (2007) Respostas fisiológicas de plantas às mudanças climáticas: alterações no balanço de carbono nas plantas podem afetar o ecossistema? In: Rego GM, Negrelle RR, Morellato LPC (org.). Fenologia – Ferramenta pra a conservação e manejo de recursos vegetais arbóreos. Colombo, PR: Embrapa, pp 213–230Google Scholar
  7. Crawford RMM (1978) Metabolic adaptations to anoxia. In: Hook DD, Crawford RMM (eds) Plant life in anaerobic environments. Ann Arbor Science, London, pp 119–136Google Scholar
  8. Crawford RMM (1992) Oxygen availability as an ecological limit to plant distribution. Adv in Ecol Res 23:93–185CrossRefGoogle Scholar
  9. Crawford RMM, Braendle R (1996) Oxygen deprivation stress in a changing environment. J Experiment Bot 47(295):145–159CrossRefGoogle Scholar
  10. De Simone O, Haase K, Müller E, Junk WJ, Gonsior GA, Schmitt W (2002a) Impact of root morphology on metabolism and oxygen distribution in roots and rhizosphere from two Central Amazon floodplain tree species. Funct Plant Biol 29:1025–1035CrossRefGoogle Scholar
  11. Dennis ES, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren FU, Grover A, Ismond KP, Good AG, Peacock WJ (2000) Molecular strategies for improving waterlogging tolerance in plants. J Experiment Bot 51(342):89–97CrossRefGoogle Scholar
  12. Drew MC, He C, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 3(5):123–127CrossRefGoogle Scholar
  13. Ellis MH, Dennis ES, James W (1999) Arabdopsis root and shoots have different mechanisms for hipoxic stress tolerance. Plant Physiol 119(1):57–64PubMedCrossRefGoogle Scholar
  14. Fan L, Zheng S, Wang X (1997) Antisense suppression of phospholipase D retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9:2916–2919Google Scholar
  15. Ferreira CS (2002) Germinação e adaptações metabólicas e morfo-anatômicas em plântulas de Himatanthus succuuba (Spruce) Wood., de ambientes de várzea e terra firme na Amazônia Central. Unpubl Master Thesis, Universidade do Amazonas (UA), Instituto Nacional de Pesquisas da Amazônia (INPA), p 95Google Scholar
  16. Ferreira CS (2006) Aspectos morfo-anatômicos, bioquímicos e genéticos de de Himatanthus sucuuba, em ambiente de várzea e de terra firme da Bacia Amazônica. Ph.D. thesis, CAPES, INPA/UFAM, ManausGoogle Scholar
  17. Ferreira CS, Piedade MTF, Bonates LC (2006) Germinação de sementes e sobrevivência de plântulas de Himatanthus sucuuba (Spruce) Wood. em resposta ao alagamento, nas várzeas da Amazônia Central. Acta Amazonica 36:413–418Google Scholar
  18. Ferreira CS, Piedade MTF, Junk WJ, Parolin P (2007) Floodplain and upland populations of Amazonian Himatanthus sucuuba: effects of flooding on germination, seedling growth and mortality. Environ Experiment Bot 60(3):477–483CrossRefGoogle Scholar
  19. Ferreira CS, Piedade MTF, Franco A, Gonçalves JFC, Junk WJ (2008) Adaptive strategies to tolerate prolonged flooding in seedlings of floodplain and upland populations of Himatanthus sucuuba, a Central Amazon tree. Aquat Bot 1:1–7Google Scholar
  20. Ferreira CS, Figueira AVO, Gribel R, Wittmann F, Piedade MTF (2010) Genetic variability, divergence and speciation in trees of periodically flooded forests of the Amazon: a case study of Himatanthus sucuuba (SPRUCE) WOODSON. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  21. Ferreira LV (2000) Effect of flooding duration on species richness, floristic composition and forest structure in river margin habitats in Amazonian blackwater floodplain forests: implications for future design of protected areas. Biodivers Conserv 9:1–14CrossRefGoogle Scholar
  22. Fiedler S, Sommer M (2004) Water and redox conditions in wetland soils – their influence on pedogenic oxides and morphology. Soil Sci Soc Am 68:326–335CrossRefGoogle Scholar
  23. Furch K (2000) Chemistry and bioelement inventory of contrasting Amazonian forest soils. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) The Central Amazon floodplain: actual use and options for a sustainable management. Backhuys, Leiden, pp 109–128Google Scholar
  24. Gaston S, Zabalza A, González EM, Arrese-Igor C, Aparicio-Tejo PM, Royuela M (2002) Imazethapyr, an inhibitor of the branched-chain amino acid biosynthesis, induces aerobic fermentation in pea plants. Physiol Plant 114:524–532PubMedCrossRefGoogle Scholar
  25. Gill CJ (1970) The flooding tolerance of woody species – a review. Forest Abstr 31(4):671–688Google Scholar
  26. Good AG, Crosby WL (1989) Anaerobic Induction of Alanine Aminotransferase in Barley Root Tissue. Plant Physiol 90:1305–1309PubMedCrossRefGoogle Scholar
  27. Graffmann KC, Grosse W, Junk WJ, Parolin P (2008) Pressurized gas transport in Amazonian floodplain trees. Environ Experiment Bot 62:371–375CrossRefGoogle Scholar
  28. Gut A, Scheibe M, Rottenberger S, Rummel U, Welling M, Ammann A, Kirkman G, Kuhn U, Meixner FX, Kesselmeier J, Lehmann BE, Schmidt W, Miller E, Piedade MTF (2002) Exchange fluxes of the NO2 and O3 at soil and leaf surfaces in an Amazonian rain forest. J Geophys Res 107(20):1–15Google Scholar
  29. Haase K, De Simone O, Junk WJ, Schmidt W (2003) Internal oxygen transport in cuttings from flood-adapted várzea tree species. Tree Phys 23:1069–1076CrossRefGoogle Scholar
  30. Harborne JB (1988) Introduction to ecological biochemistry, 3rd edn. London, Academic Press, p 356Google Scholar
  31. Holzinger R, Sandoval-Soto L, Rottenberger S, Crutzen PJ, Kesselmeier J (2000) Emissions of volatile organic compounds from Quercus ilex L. measured by Proton transfer reaction mass spectrometry under different environmental conditions. J Geophys Res -Atmos 105(D16):20/573–579Google Scholar
  32. Hormaetxe K, Esteban R, Becerril JM, García-Plazaola JI (2005) Dynamics of the α-tocopherol pool as affected by external (environmental) and internal (leaf age) factors in Buxus sempervirens leaves. Physiologia Plantarum 125:333–344CrossRefGoogle Scholar
  33. Joly CA, Crawford RMM (1982) Variation in tolerance and metabolic responses to flooding in some tropical trees. J Experiment Bot 33:799–809CrossRefGoogle Scholar
  34. Junk WJ (1989) Flood tolerance and tree distribution in central Amazonian floodplains. In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests: botanical dynamics, speciation and diversity. Academic Press, New York, pp 47–64Google Scholar
  35. Junk WJ (1993) Wetlands of tropical South America. In: Whigham D, Hejny S, Dykyjova D (eds) Wetlands of the world. Junk Publications, Dordrecht, pp 679–739Google Scholar
  36. Junk WJ, Barley PB, Sparks RE (1989) The flood-pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127Google Scholar
  37. Kern J, Darwich A (1997) Nitrogen turnover in the várzea. In: Junk WJ (ed) The Central Amazon floodplains. Ecology of a pulsing system. Springer, Berlin/Heidelberg/New York, pp 119–135CrossRefGoogle Scholar
  38. Kern J, Kreibich H, Koschorreck M, Darwich A (2010) Nitrogen balance of a floodplain forest of the Amazon River: the role of Nitrogen fixation. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  39. Kesselmeier J (2001) Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: a compilation of field and laboratory studies. J Atmosph Chemis 39(3):219–233CrossRefGoogle Scholar
  40. Kesselmeier J, Bode K, Hofmann U, Müller H, Schäfer L, Wolf A, Ciccioli P, Brancaleoni E, Cecinato A, Frattoni M, Foster P, Ferrari C, Jacob V, Fugit JL, Dutaur L, Simon V, Torres L (1997) Emission of short chained organic acids, aldehydes and monoterpenes from Quercus ilex L. and Pinus pinea L. in relation to physiological activities, carbon budget and emission algorithms. Atmos Environ 31(SI):119–134Google Scholar
  41. Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88CrossRefGoogle Scholar
  42. Kimmerer TW, Kozlowski TT (1982) Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress. Plant Physiol 69:840–847PubMedCrossRefGoogle Scholar
  43. Kimmerer TW, MacDonald RC (1987) Acetaldehyde and ethanol biosynthesis in leaves of plants. Plant Physiol 84:1204–1209PubMedCrossRefGoogle Scholar
  44. Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Doferus R, Dennis ES (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481–2494PubMedCrossRefGoogle Scholar
  45. Kotzias D, Konidari C, Sparta C (1997) Volatile carbonyl compounds of biogenic origin – emission and concentration in the atmosphere. In: Helas G, Slanina J, Steinbrecher R (eds) Biogenic volatile organic Carbon compounds in the atmosphere. SPB Academic Publishing, Amsterdam, pp 67–78Google Scholar
  46. Kozlowski TT (1984a) Plant response to flooding of soil. BioScience 34(3):162–167CrossRefGoogle Scholar
  47. Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monograph 1:1–29Google Scholar
  48. Kreuzwieser J, Scheerer U, Rennenberg H (1999) Metabolic origin of acetaldehyde emitted by poplar (Populus tremula x P-alba) trees. J Exp Bot 50(335):757–765Google Scholar
  49. Lobo PC, Joly CA (1998) Tolerance to hypoxia and anoxia in Neotropical tree species. Oecologia Brasiliensis 4:137–156CrossRefGoogle Scholar
  50. Long SP, Ainsworth EA, Leakey ADB, Nosberger J, Ort D (2006) Food for thought: lower-than-expected crop yield simulation with rising CO2 concentrations. Science 312:1918–1921PubMedCrossRefGoogle Scholar
  51. Martius C (1997) The termites. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecol Stud 126:362–371. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  52. Medri ME, Ferreira ACS, Kolb RM, Bianchini E, Pimenta JA, Davanso-Fabro VM, Medri C (2007) Alterações morfoanatômicas em plantas de Lithraea molleoides (Vell.) Engl. submetidas ao alagamento. Acta Scientiarum (29):15–22Google Scholar
  53. Megonigal JP, Vann CD, Wolf AA (2005) Flooding constraints on tree (Taxodium distichum) and herb growth responses to elevated CO2. Wetlands 25:430–438CrossRefGoogle Scholar
  54. Melack JM, Hess LL, Gastil M, Forsberg BR, Hamilton SK, Lima IBT, Novo EMLM (2004) Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global Change Biol 10(5):530–544CrossRefGoogle Scholar
  55. Menezes Neto MA (1994) Influência da disponibilidade de oxigênio sobre a germinação, crescimento, e atividade das enzimas álcooldesidrogenase e lactato desidrogenase em Açaí (Euterpe oleracea Mart.). Dissertação de Mestrado, Escola Superior de Agricultura de Lavras, Minas Gerais, Brasil, p 50Google Scholar
  56. Mitsch WJ, Gosselink JG (2000) Wetlands. Wiley, New YorkGoogle Scholar
  57. Mommer L, Visser EJW (2005) Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Annal Bot 96:581–589CrossRefGoogle Scholar
  58. Oliveira Wittmann A (2007) Conteúdo de tocromanóis em espécies arbóreas de várzea da Amazônia Central sob condições controladas. Tese INPA/UFAM, p 126Google Scholar
  59. Parolin P (1998) Floristic composition and structure of two stands of Senna reticulata differing in age. Amazoniana 15(1/2):113–128Google Scholar
  60. Parolin P (2001a) Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia 128:326–335CrossRefGoogle Scholar
  61. Parolin P (2009) Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Annal Bot Flood Spec Issue 103:359–376CrossRefGoogle Scholar
  62. Parolin P, Armbrüster N, Junk WJ (2002a) Seasonal changes of leaf nitrogen content in trees of Amazonian floodplains. Acta Amazonica 32(2):231–240Google Scholar
  63. Parolin P, Adis J, Rodrigues WA, Amaral I, Piedade MTF (2004a) Floristic study of an igapó floodplain forest in Central Amazonia, Brazil (Tarumã-Mirim, Rio Negro). Amazoniana 18(1/2):29–47Google Scholar
  64. Parolin P, Lucas C, Piedade MTF, Wittmann F (2010) Drought responses of extremely flood tolerant trees of Amazonian floodplains. Annal Bot 105(1):129–139Google Scholar
  65. Phillips OL, Lewis SL, Baker TR, Chao K-J, Higuchi N (2008) The changing Amazon forest. Philos T Roy Soc B 363:1819–1827CrossRefGoogle Scholar
  66. Piedade MTF, Worbes M, Junk WJ (2001) Geo-ecological controls on elemental fluxes in communities of higher plants in Amazonian floodplains. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, New York, p 209–234Google Scholar
  67. Ponnamperuma FN (1984) Effects of flooding on soils. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, London, pp 9–45Google Scholar
  68. Rottenberger S (2003) Exchange of oxygenated volatile organic compounds between Amazonian and European vegetation and atmosphere. Ph.D. thesis, University of MainzGoogle Scholar
  69. Rottenberger S, Kleiss B, Kuhn U, Wolf A, Piedade MTF, Junk J, Kesselmeier J (2008) The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere. Biogeosciences (Katlenburg-Lindau) (5):1085–1100Google Scholar
  70. Santiago EF, Paoli AS (2007) Morphological responses in Guibourtia hymenifolia (Moric.) J. Leonard (Fabaceae) and Genipa americana L. (Rubiaceae) to nutrient deficit and flooding stress. Revista Brasileira de Botanica 30(1)Google Scholar
  71. Schlüter UB, Furch B (1992) Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz des Baumes Macrolobium acaciaefolium, charakteristisch für die Weißund Schwarzwasser-Überschwemmungswälder bei Manaus, Amazonas. Amazoniana 12:51–69Google Scholar
  72. Schlüter UB, Furch B, Joly CA (1993) Physiological and anatomical adaptations by young Astrocaryum jauari Mart (Arecaceae) in periodically inundated biotopes of Central Amazonia. Biotropica 25(4):384–396CrossRefGoogle Scholar
  73. Singh HB, Kanakidou M, Crutzen PJ, Jacob DJ (1995) High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere. Nature 378:50–54CrossRefGoogle Scholar
  74. Taiz L, Zeiger E (2004) Fisiologia vegetal. Trad. Eliane Romanato Santarém 3a. ed.– Porto Alegre. Artmed. p 719Google Scholar
  75. Talbot RW, Andreae MO, Berresheim H, Jacob DJ, Beecher KM (1990) Sources and sinks of formic, acetic, and pyruvic acids over central Amazonia.2. Wet Season. J Geophys Res Atmos 95:16799–16811Google Scholar
  76. Thompson AM (1992) The oxidizing capacity of the earth’s atmosphere – probable past and future changes. Science 256:1157–1165PubMedCrossRefGoogle Scholar
  77. Visser EJW, Voesenek LACJ (2004) Acclimation to soil flooding – sensing and signal-tranduction. Plant Soil 254:197–214Google Scholar
  78. Voesenek LACJ, Banga M, Rijnders JGHM, Visser EJW, Blom CWPM (1996) Hormone sensitivity and plant adaptations to flooding. Folia Geobotanica 31(1):47–56CrossRefGoogle Scholar
  79. Waldhoff D, Furch B, Junk WJ (2002) Fluorescence parameters, chlorophyll concentration, and anatomical features as indicators for flood adaptation of an abundant tree species in Central Amazonia: Symmeria paniculata. Environ Experimen Bot 48(3):225–235CrossRefGoogle Scholar
  80. Wand SJE, Midgley GF, Jones MH, Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a met analytic test for current theories and perceptions. Global Change Biol 5:723–741CrossRefGoogle Scholar
  81. Wingler A, von Schaewen A, Leegood RC, Lea PJ, Quick WP (1998) Regulation of senescence by citokinin, sugars and light. Plant Physiol 116:329–335CrossRefGoogle Scholar
  82. Wittmann F (2001) Artenverbreitung und Bestandesstruktur in amazonischen Várzea-Wäldern und Möglichkeiten der Erfassung von Waldtypen mittels fernerkundlichen Methoden. Ph.D. thesis, Universität Mannheim, Fachbereich GeographieGoogle Scholar
  83. Wittmann F, Anhuf D, Junk WJ (2002b) Tree species distribution and community structure of central Amazonian várzea forests by remote-sensing techniques. J Trop Ecol 18: 805–820CrossRefGoogle Scholar
  84. Worbes M (1986) Lebensbedingungen und Holzwachstum in zentralamazonischen Überschwemmungswäldern. Erich Goltze, Göttingen. Scripta Geobotanica 17:1–112Google Scholar
  85. Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsating system. Ecolog Stud 126:223–265. Springer, Berlin/Heidelberg/New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Maria T. F. Piedade
    • 1
    Email author
  • Cristiane S. Ferreira
    • 2
  • Astrid de Oliveira Wittmann
    • 3
  • Marcos Buckeridge
    • 4
  • Pia Parolin
    • 5
    • 6
  1. 1.Wetlands Ecology and Adaptations of Plants to FloodingNational Institute of Amazon Research (INPA)Manaus-AMBrazil
  2. 2.Department of BotanyUniversity of BrasiliaBrasíliaBrazil
  3. 3.National Institute of Amazon Research (INPA)ManausBrazil
  4. 4.Department of Botany, Institute of BiosciencesUniversity of São PauloSão PauloBrazil
  5. 5.Flottbek Systematik der PflanzenUniversity of Hamburg, Biozentrum KleinHamburgGermany
  6. 6.Biocentre Klein Flottbek, Dept of Plant SystematicsUniversity of HamburgHamburgGermany

Personalised recommendations