Advertisement

Growth-Oriented Logging (GOL): The Use of Species-Specific Growth Information for Forest Management in Central Amazonian Floodplains

  • Jochen SchöngartEmail author
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 210)

Abstract

So far, timber resources in central Amazonian floodplain forests are managed by selective logging with a felling cycle of 25 years and a diameter cutting limit (DCL) of 50 cm. However, these time and diameter limitations are estimations or legal restrictions rather than being derived from scientific data. From 14 tree species of nutrient-rich white-water (várzea) and nutrient-poor black-water (igapó) floodplain forest in central Amazonia wood growth in diameter and volume was modelled using tree-ring analyses. Cumulative diameter growth curves indicated periods between 15 and 261 years for species to pass over the DCL of 50 cm. From volume growth models the minimum logging diameter (MLD) was defined as diameter at the age of maximum current volume increment rates. For the majority of the analysed tree species the MLD was higher than the DCL of 50 cm. Felling cycles, estimated as the mean passage time through 10 cm diameter classes until reaching the MLD, indicated large variations from 3 to 53 years between tree species. Tree species which occur in both floodplain system present significantly lower diameter increment rates in the igapó than in the várzea due to the contrasting nutrient status. The sustainable use of timber resources in the igapó is, under current management options, not practicable and this ecosystem should be therefore excluded from timber resource management and permanently protected. The várzea is a dynamic system with highly productive forest ecosystems which favours the development of an integrated sustainable forest management. However, such a timber resource management must be species-specific. Based on tree ages, increment rates, volume production and population structure of commercial tree species the GOL concept (Growth-Oriented Logging) was developed to achieve a higher level of sustainability for the timber resource management in várzea forests.

Keywords

Wood Density Sustainable Forest Management Floodplain Forest Timber Species Permanent Sample Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This study was supported by the SHIFT Program ENV-29/2 (CNPq-BMBF), the CNPq (Project 680021/2005-1 “Pesquisas Para Apoio à Produção Comunitária Sustentada nas Florestas Alagadas de Mamirauá e Amanã”) and the INPA/Max-Planck Project. I acknowledge the Mamirauá Institute for Sustainable Development for their support and colaboration and Celso Rabelo Costa and Jackson de Castro for technical assistance during the field work. I thank Eberhard F. Bruenig for his careful review and valuable comments on this chapter.

References

  1. Albernaz ALKM, Ayres JM (1999) Logging along the Middle Solimões River. In: Padoch C, Ayres JM, Pinedo-Vasquez M, Henderson A (eds) Várzea: diversity, development, and conservation of Amazonian’s whitewater floodplains. The New York Botanical Garden Press, New York, pp 135–151Google Scholar
  2. Alder D, Silva JNM (2000) An empirical cohort model for management of terra firme forests in the Brazilian Amazon. Forest Ecol Manag 130:141–157CrossRefGoogle Scholar
  3. Bentes-Gama MM, Scolforo JRS, Gama JRV, De Oliveira AD (2002) Estrutura e valorização de uma floresta de várzea alta na Amazônia. Cerne 8(1):88–102Google Scholar
  4. Boltz F, Carter DR, Holmes TP, Pereira R Jr (2001) Financial returns under uncertainty for conventional and reduced impact logging in permanent production forests of the Brazilian Amazon. Ecol Econ 39:387–398CrossRefGoogle Scholar
  5. Boot RGA, Gullison RE (1995) Approaches to developing sustainable extraction systems for tropical forest products. Ecol Appl 5:896–903CrossRefGoogle Scholar
  6. Bossel H, Krieger H (1991) Simulation model of natural tropical forests dynamics. Ecol Model 59:37–71CrossRefGoogle Scholar
  7. Brampton J (2001) Programa de Manejo Florestal Comunitário. Documento de trabalho. Instituto de Desenvolvimento Sustentável Mamirauá. MCT/CNPq-ProManejo-DFID, (unpublished)Google Scholar
  8. Brandis D (1898) Forsteinrichtung in den Teakwaldungen von Pegu. Allg Forst Jagdztg 74:45–52Google Scholar
  9. Brienen RJW, Zuidema PA (2006a) Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. J Ecol 94:481–493CrossRefGoogle Scholar
  10. Bruenig EF (1996) Conservation and management of tropical rainforests. An integrated approach to sustainability. CAB International, Wallingford, UKGoogle Scholar
  11. Cannell MGR (1984) Woody biomass of forest stands. Forest Ecol Manage 8:299–312CrossRefGoogle Scholar
  12. Carvalho JOP, Silva JNM, Lopes JCA (2004) Growth rate of a terra firme rain forest in brazilian Amazonia over an eight-year period in response to logging. Acta Amazonica 34(2):209–217CrossRefGoogle Scholar
  13. Chao NL, Prang G (1997) Project Piaba – towards a sustainable ornamental fishery in the Amazon. Aquar Sci Conservat 1(2):105–111CrossRefGoogle Scholar
  14. Clark DA, Clark DB (1999) Assessing the growth of tropical rain forest trees: issues for forest modelling and management. Ecol Appl 9(3):981–997CrossRefGoogle Scholar
  15. Clark DB, Clark DA (1996) Abundance, growth and mortality of very large trees in neotropical lowland rain forest. Forest Ecol Manag 80:235–244CrossRefGoogle Scholar
  16. Condit R (1995) Research in large, long-term tropical forest plots. Trends Ecol Evol 10:18–22PubMedCrossRefGoogle Scholar
  17. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187PubMedCrossRefGoogle Scholar
  18. Dauber E, Fredericksen TS, Peña M (2005) Sustainability of timber harvesting in Bolivian tropical forests. Forest Ecol Manag 214:294–304CrossRefGoogle Scholar
  19. Dawkins HC, Philip MS (1998) Tropical moist forest silviculture and management: a history of success and failure. CAB International, Wallingford, UKGoogle Scholar
  20. Dykstra JA, Heinrich R (1996) FAO model code of forest harvesting practice. Food and Agriculture Organization of the United Nations (FAO), Rome, ItalyGoogle Scholar
  21. Faria IF (2005) Ecoturismo: etnodesenvolvimento e inclusão social no Amazonas. PASOS 3(1):63–77Google Scholar
  22. Finegan B, Camacho M, Zamora N (1999) Diameter increment patterns among 106 tree species in a logged and silviculturally treated Costa Rican rain forest. Forest Ecol Manag 121:159–176CrossRefGoogle Scholar
  23. Fortini LB, Rabelo FG, Zarin DJ (2006) Mixed potential for sustainable forest use in the tidal floodplain of the Amazon River. Forest Ecol Manag 231:78–85CrossRefGoogle Scholar
  24. Furch K (1997) Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecolog Stud 126:47–68. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  25. Gama JRV, Bentes-Gama MM, Scolforo JRS (2005a) Manejo sustentado para floresta de várzea na Amazônia Oriental. Revista Árvore 29(5):719–729CrossRefGoogle Scholar
  26. Gerwing JJ (2002) Degradation of forests through logging and fire in the eastern Brazilian Amazon. Forest Ecol Manag 157:131–141CrossRefGoogle Scholar
  27. Hartshorn GS (1980) Neotropical forest dynamics. Biotropica 12:23–30CrossRefGoogle Scholar
  28. Hesmer H (1975) Leben und Werk von Dietrich Brandis, Westdeutscher VerlagGoogle Scholar
  29. Holmes TP, Blate GM, Zweede JC, Pereira R, Barreto P, Boltz F, Bauch R (2002) Financial and ecological indicators of reduced impact logging performance in the eastern Amazon. Forest Ecol Manag 163:93–110CrossRefGoogle Scholar
  30. Huth A, Ditzer T (2000) Simulation of the growth of a lowland Dipterocarp rain forest with FORMIX3. Ecol Model 134:1–25CrossRefGoogle Scholar
  31. Huth A, Drechsler M, Köhler P (2005) Using multicriteria decision analysis and a forest growth model to assess impacts of tree harvesting in Dipterocarp lowland rainforests. Forest Ecol Manag 207:215–232CrossRefGoogle Scholar
  32. IPCC (2007) Climate change 2007: the physical science basis: summary for policymakers and technical summary. Working group I of the intergovernmental panel on climate change (IPCC), WMO & UNEP, Geneva, SwitzerlandGoogle Scholar
  33. Irion G, Junk WJ, Mello JASN (1997) The large Central Amazonian river floodplains near Manaus: geological, climatological, hydrological, and geomorphological aspects. In: Junk WJ (ed) The Central Amazon floodplains. Ecology of a pulsing system. Springer, Berlin/Heidelberg/New York, pp 23–46CrossRefGoogle Scholar
  34. Jansen M, Martin P-G (1995) Anwendung des Bestandessimulationsmodells TREEDYN3 auf die Fichten-Versuchsfläche Solling F1. Ber Forschz Waldökos Reihe B 45:1–79Google Scholar
  35. Johns JS, Baretto P, Uhl C (1996) Logging damage during planned and unplanned logging operations in the eastern Amazon. Forest Ecol Manag 89:59–77CrossRefGoogle Scholar
  36. Junk WJ (2000a) The Central Amazon river floodplain: concepts for the sustainable use of its resources. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) The Central Amazon floodplain: actual use and options for a sustainable management. Backhuys Publishers bV, Leiden, pp 75–94Google Scholar
  37. Junk WJ, Soares MG, Bayley PB (2007) Freshwater fishes of the Amazon River basin: their biodiversity, fisheries and habitats. Aquat Ecosyst Health Manage 10(2):153–173CrossRefGoogle Scholar
  38. Junk WJ, Piedade MTF, Wittmann F, Schöngart J (2010a) The role of floodplain forests in an integrated sustainable management concept of the natural resources of the central Amazonian várzea. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  39. Kalliola R, Salo J, Puhakka M, Rajasilta M (1991) New site formation and colonizing vegetation in primary succession on the western Amazon floodplains. J Ecol 79:877–901CrossRefGoogle Scholar
  40. Kammesheidt L, Köhler P, Huth A (2001) Sustainable timber harvesting in Venezuela: a modelling approach. J Appl Ecol 38:756–770CrossRefGoogle Scholar
  41. Kammesheidt L, Dagang AA, Schwarzwäller W, Weidelt H-J (2003) Growth patterns of dipterocarps in treated and untreated plots. Forest Ecol Manag 174:437–445CrossRefGoogle Scholar
  42. Korning J, Balslev H (1994) Growth rates and mortality patterns of tropical lowland tree species and the relation to forest structure in Amazonian Ecuador. J Trop Ecol 10:151–166CrossRefGoogle Scholar
  43. Kvist LP, Nebel G (2001) A review of Peruvian flood plain forests: ecosystems, inhabitants and resource use. Forest Ecol Manage 150:3–26CrossRefGoogle Scholar
  44. Kvist LP, Andersen MK, Stagegaard J, Hesselsøe M, Llapapasca C (2001) Extraction from woody forest plants in flood plain communities in Amazonian Peru: use, choice, evaluation and conservation status of resources. Forest Ecol Manag 150:147–174CrossRefGoogle Scholar
  45. Lamprecht H (1989) Silviculture in the tropics: tropical forest ecosystems and their tree species – possibilities and methods for their long-term utilization. GTZ, EschbornGoogle Scholar
  46. Laurance WF, Nascimento HEM, Laurance SG, Condit R, D’Angelo S, Andrade A (2004) Inferred longevity of Amazonian rainforest trees based on a long-term demographic study. Forest Ecol Manag 190:131–143CrossRefGoogle Scholar
  47. Lieberman M, Lieberman D (1985) Simulation of growth curves from periodic increment data. Ecology 66:632–635CrossRefGoogle Scholar
  48. Mayhew JE, Newton AC (1998) The silviculture of Mahagony. CABI Publishing, LondonGoogle Scholar
  49. Mesquita RCG (2000) Management of advanced regeneration in secondary forests of the Brazilian Amazon. Forest Ecol Manag 130:131–140CrossRefGoogle Scholar
  50. Nebel G (2001) Minquartia guianensis Aubl.: use, ecology and management in forestry and agroforestry. Forest Ecol Manag 150:115–124CrossRefGoogle Scholar
  51. Nebel G, Dragsted J, Salazar Vega A (2001a) Litter fall, biomass and net primary production in flood plain forests in the Peruvian Amazon. Forest Ecol Manag 150:93–102CrossRefGoogle Scholar
  52. Neeff T, Santos JR (2005) A growth model for secondary forest in Central Amazonia. Forest Ecol Manag 216:270–282CrossRefGoogle Scholar
  53. Oliveira Wittmann A de, Lopes A, Conserva A dos S, Piedade MTF (2010) Germination and seedling establishment in floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  54. Putz FE, Sist P, Fredericksen T, Dykstra D (2008) Reduced-impact logging: challenges and opportunities. Forest Ecol Manag 256:1427–1433CrossRefGoogle Scholar
  55. Queiroz HL, Peralta N (2010) Protected areas in Amazonian várzea and their role in its conservation: the case of Mamirauá Sustainable Development Reserve (MSDR). In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  56. Rosa SA (2008) Modelos de crescimento de quatro espécies madeireiras de floresta de várzea alta da Amazônia Central por meio de métodos dendrocronológicos. M.Sc. thesis INPA/UFAM, Manaus, BrazilGoogle Scholar
  57. Salo J, Kalliola R, Häkkinen L, Mäkinen Y, Niemelä P, Puhakka M, Coley PD (1986) River dynamics and the diversity of Amazon lowland forest. Nature 322:254–258CrossRefGoogle Scholar
  58. Schöngart J (2008) Growth-Oriented Logging (GOL): a new concept towards sustainable forest management in Central Amazonian várzea floodplains. Forest Ecol Manag 256:46–58CrossRefGoogle Scholar
  59. Schöngart J, Piedade MTF, Ludwigshausen S, Horna V, Worbes M (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597CrossRefGoogle Scholar
  60. Schöngart J, Junk WJ, Piedade MTF, Ayres JM, Hüttermann A, Worbes M (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño-Southern oscillation effect. Global Change Biol 10:683–692CrossRefGoogle Scholar
  61. Schöngart J, Piedade MTF, Wittmann F, Junk WJ, Worbes M (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:654–661CrossRefGoogle Scholar
  62. Schöngart J, Wittmann F, Worbes M, Piedade MTF, Krambeck H-J, Junk WJ (2007) Management criteria for Ficus insipida Willd. (Moraceae) in Amazonian white-water floodplain forests defined by tree-ring analysis. Ann For Sci 64:657–664CrossRefGoogle Scholar
  63. Schwartz MW, Caro TM, Banda-Sakala T (2002) Assessing the sustainability of harvest of Pterocarpus angolensis in Rukwa Region, Tanzania. Forest Ecol Manag 170:259–269CrossRefGoogle Scholar
  64. Sebbenn AM, Degen B, Azevedo VCR, Silva MB, Lacerda AEB, Ciampi AY, Kanashiro M, Carneiro FS, Thompson I, Loveless MD (2008) Modelling the long-term impacts of selective logging on genetic diversity and demographic structure of four tropical tree species in the Amazon fores. Forest Ecol Manag 254:335–349CrossRefGoogle Scholar
  65. Silva RP, Santos J, Tribuzy ES, Chambers JQ, Nakamura S, Higuchi N (2002) Diameter increment and growth patterns for individual tree growing in Central Amazon, Brazil. Forest Ecol Manag 166:295–301CrossRefGoogle Scholar
  66. Sist P, Picard N, Gourlet-Fleury S (2003) Sustainable cutting cycle and yields in a lowland mixed dipterocarp forest of Borneo. Ann For Sci 60:803–814CrossRefGoogle Scholar
  67. Sokpon N, Biaou SH (2002) The use of diameter distributions in sustained-use management of remnant forests in Benin: case of Bassila forest reserve in North Benin. Forest Ecol Manag 161:13–25CrossRefGoogle Scholar
  68. Stadtler EWC (2007) Estimativas de biomassa lenhosa, estoque e seqüestro de carbono acima do solo ao longo do gradiente de inundação em uma floresta de igapó alagada por água preta na Amazônia Central. M.Sc. thesis, INPA/UFAM, Manaus, BrazilGoogle Scholar
  69. Stahle DW, Mushove PT, Cleaveland MK, Roig F, Haynes GA (1999) Management implications of annual growth rings in Pterocarpus angolensis from Zimbabwe. Forest Ecol Manag 124:217–229CrossRefGoogle Scholar
  70. Swaine MD, Whitmore TC (1988) On the definition of ecological species groups in tropical rain forests. Vegetatio 75:81–86CrossRefGoogle Scholar
  71. Terborgh J, Petren K (1991) Development of habitat structure through succession in an Amazonian floodplain forest. In: Bell SS (ed) Habitat Structure. Chapman and Hall, London, pp 28–46CrossRefGoogle Scholar
  72. Terborgh J, Flores CN, Mueller P, Davenport L (1997) Estimating the ages of successional stands of tropical trees from growth increments. J Trop Ecol 14:833–856CrossRefGoogle Scholar
  73. Valle D, Schulze M, Vidal E, Grogan J, Sales M (2006) Identifying bias in stand-level growth and yield estimations: a case study in eastern Brazilian Amazonia. Forest Ecol Manag 236:127–135CrossRefGoogle Scholar
  74. Van Gardingen PR, Valle D, Thompson I (2006) Evaluation of yield regulation options for primary forest in Tapajós National Forest, Brazil. Forest Ecol Manag 231:184–195CrossRefGoogle Scholar
  75. Vanclay JK (1994) Modelling forest growth and yield: applications to mixed tropical forests. CAB International, Wallingford, UKGoogle Scholar
  76. Vidal E, Johns J, Gerwing JJ, Barreto P, Uhl C (1997) Vine management for reduced-impact logging in eastern Amazonia. Forest Ecol Manag 98:105–114CrossRefGoogle Scholar
  77. Whitmore TC (1993) Tropische Regenwälder: Eine Einführung. Spektrum Akad. Springer, Heidelberg/Berlin/New YorkGoogle Scholar
  78. Wittmann F (2001) Artenverbreitung und Bestandesstruktur in amazonischen Várzea-Wäldern und Möglichkeiten der Erfassung von Waldtypen mittels fernerkundlichen Methoden. Ph.D. thesis, Universität Mannheim, Fachbereich GeographieGoogle Scholar
  79. Wittmann F, Anhuf D, Junk WJ (2002b) Tree species distribution and community structure of central Amazonian várzea forests by remote-sensing techniques. J Trop Ecol 18: 805–820CrossRefGoogle Scholar
  80. Wittmann F, Junk WJ (2003) Sapling communities in Amazonian white-water forests. J Biogeogr 30:1533–1544CrossRefGoogle Scholar
  81. Wittmann F, Junk WJ, Piedade MTF (2004) The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. Forest Ecol Management 196:199–212CrossRefGoogle Scholar
  82. Wittmann F, Schöngart J, Montero JC, Motzer M, Junk WJ, Piedade MTF, Queiroz HL, Worbes M (2006) Tree species composition and diversity gradients in white-water forests across the Amazon Basin. J Biogeogr 33:1334–1347CrossRefGoogle Scholar
  83. Worbes M (1986) Lebensbedingungen und Holzwachstum in zentralamazonischen Überschwemmungswäldern. Erich Goltze, Göttingen. Scripta Geobotanica 17:1–112Google Scholar
  84. Worbes M (1994) Grundlagen und Anwendungen der Jahresringforschung in den Tropen. Universität of Hamburg, HabilitationsschriftGoogle Scholar
  85. Worbes M (1995) How to measure growth dynamics in tropical trees – a review. IAWA J 16:337–351Google Scholar
  86. Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsating system. Ecolog Stud 126:223–265. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  87. Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403CrossRefGoogle Scholar
  88. Worbes M, Klinge H, Revilla JD, Martius C (1992) On the dynamics, floristic subdivision and geographical distribution of várzea forests in Central Amazonia. J Vegetat Sci 3:553–564CrossRefGoogle Scholar
  89. Worbes M, Junk WJ (1999) How old are tropical trees? The persistence of a myth. IAWA J 20(3):255–260Google Scholar
  90. Worbes M, Piedade MTF, Schöngart J (2001) Holzwirtschaft im Mamirauá-Projekt zur nachhaltigen Entwicklung einer Region im Überschwemmungsbereich des Amazonas. Forstarchiv 72:188–200Google Scholar
  91. Worbes M, Staschel R, Roloff A, Junk WJ (2003) Tree ring analysis reveals age structure, dynamics and wood production of a natural forest stand in Cameroon. Forest Ecol Manag 173:105–123CrossRefGoogle Scholar
  92. Worbes M, Fichtler E (2010) Wood anatomy and tree-ring structure and their importance for tropical dendrochronology. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  93. Wyatt-Smith J (1963) Manual of Malayan silviculture for inlnad forests, parts I–III. Malayan Forest Records no. 23, Forest Research Institute, KepongGoogle Scholar
  94. Ziburski A (1991) Dissemination, Keimung und Etablierung einiger Baumarten der Überschwemmungswälder Amazoniens. In: Rauh W (ed) Tropische und subtropische Pflanzenwelt. Akademie der Wissenschaften und der Literatur 77:1–96Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Biogeochemistry DepartmentMax Planck Institute for ChemistryMainzGermany

Personalised recommendations