Use of Amazonian Floodplain Trees

  • Florian WittmannEmail author
  • Astrid de Oliveira Wittmann
Part of the Ecological Studies book series (ECOLSTUD, volume 210)


Amazonian floodplain trees are used for a variety of purposes. Easy access to floodplain forests, the variety of timber and non-timber forest products (NTFPs), and especially the low cost of timber harvesting, processing and transport lead to an intense use of many floodplain tree species. Quantitative inventories in várzea forests indicate that up to 70% of all tree species are useful to the floodplain inhabitants and/or extractors. In Brazilian Amazonia, quantitative most important use category is timber for the construction of homes, boats, and floating houses, followed by phyto-medical extracts from trees, and edible fruits. Other uses each derived by few or even a single tree species might be of some economic importance when extraction occurs next to the markets. Although timber from up to 70 different várzea tree species is used for different purposes, timber extraction concentrates on comparatively few species. Most timber species occur in the high-várzea, and some of them already disappeared from local markets due to overexploitation. While the net present values of timber are easy to quantify, the value of some NTFPs to the inhabitants is indirect and difficult to measure. The importance of NTFPs is still under-represented in sustainable forest management planning.


Floodplain Forest Timber Species Terra Firme Wood Specific Gravity Amazonian Floodplain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albernaz ALKM, Ayres JM (1999) Logging along the Middle Solimões River. In: Padoch C, Ayres JM, Pinedo-Vasquez M, Henderson A (eds) Várzea: diversity, development, and conservation of Amazonian’s whitewater floodplains. The New York Botanical Garden Press, New York, pp 135–151Google Scholar
  2. Anderson AB, JrI M, Macedo DS (1999) Logging of Virola surinamensis in the Amazon floodplain: impacts and alternatives. In: Padoch C, Ayres JM, Pinedo-Vasquez M, Henderson A (eds) Várzea: diversity, development, and conservation of Amazonia’s whitewater floodplains. The New York Botanical Garden Press, New York, pp 119–133Google Scholar
  3. Ayres JM (1993) As matas de várzea do Mamirauá. In: Sociedade civil Mamirauá (ed) Estudos de Mamirauá, vol.1. Sociedade civil Mamirauá, Mamirauá, pp 1–123Google Scholar
  4. Barros AC, Uhl C (1999) The economic and social significance of logging operations on the floodplains of the Amazon estuary and prospects for ecological sustainability. In: Padoch C, Ayres JM, Pinedo-Vasquez M, Henderson A (eds) Várzea: diversity, development, and conservation of Amazonia’s whitewater floodplains. The New York Botanical Garden Press, New York, pp 153–168Google Scholar
  5. Barros FCM (2004) Avaliação da atividade imunológica In vitro de Alchornea spp. quanto à produção de peróxido de hidrogênio, óxido nítrico e fator de necrose tumoral-alfa por macrófagos murinos. M.Sc. – Diss. Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, AraraquaraGoogle Scholar
  6. Bennett BC (2002) Forest products and traditional peoples: economic, biological, and cultural considerations. Nat Resour For 26:293–301CrossRefGoogle Scholar
  7. Bentes-Gama MM, Scolforo JRS, Gama JRV, De Oliveira AD (2002) Estrutura e valorização de uma floresta de várzea alta na Amazônia. Cerne 8(1):88–102Google Scholar
  8. Beutler JA, Mc Call KL, Herbert K, Johnson T, Shoemaker RH, Boyd MR (2000) Cytotoxic clerodane diterpene esters from Laetia corymbulosa. Phytochemistry 55(3):233–236PubMedCrossRefGoogle Scholar
  9. Braca A, Morelli I, Mendez J, Battinelli L, Braghiroli L, Mazzanti G (2000) Antimicrobial triterpenoids from Licania heteromorpha. Planta Med 66(8):768–769PubMedCrossRefGoogle Scholar
  10. Brienza-Junior S, Yared YAG, Jarvis PG (1991) Agroforestry systems as an ecological approach in the Brazilian Amazon development. Agroforest Syst 45:319–323Google Scholar
  11. Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper 134, Rome, ItalyGoogle Scholar
  12. Cabral JA, McChesney JD, Milhouse WK (1993) A new antimalarial quassinoid from Simaba guianensis. J Nat Prod 56(11):1954–1961PubMedCrossRefGoogle Scholar
  13. Camporese A, Balick MJ, Arvigo R, Espósito RG, Morsellino N, De Simone F, Tubaro A (2003) Screening of anti-bacterial activity of medicinal plants from Belize (Central America). J Ethnopharmacol 87(1):103–107PubMedCrossRefGoogle Scholar
  14. Cannon JG, Burton RA, Wood SG, Owen NL (2004) Naturally occurring fish poisons from plants. J Chem Educat 81(10):1457–1461CrossRefGoogle Scholar
  15. Crook C, Clapp RA (1998) Is market-oriented forest conservation a contradiction in terms? Environ Conservat 25(2):131–145CrossRefGoogle Scholar
  16. De Jong W (2001) Tree and forest management in the flood plains of the Peruvian Amazon. Forest Ecol Manage 150:125–134CrossRefGoogle Scholar
  17. De Miranda AL, Silva JR, Rezende CM, Neves JS, Parrini SC, Pinheiro ML, Cordeiro MC, Pinto AC (2000) Anti-inflammatory and analgesic activity of the latex containing triterpenes from Himatanthus sucuuba. Planta Med 66(3):284–286PubMedCrossRefGoogle Scholar
  18. De Saizarbitoria CT, Anderson JE, Alfonso D, McLaughlin JL (1997) Bioactive furonaphtoquinones from Tabebuia barbata (Bignoniaceae). Acta Cient Venez 48(1):42–46Google Scholar
  19. De Souza ADL, Da Rocha AFI, Pinheiro MLB, Andrade CHS, Galotta AL, Dos Santos MPS (2001) Constituintes químicos de Gustavia augusta L. (Lecythidaceae). Química Nova 24(4):439–442Google Scholar
  20. Duke JA, Vázquez R (1994) Amazonian Ethnobotanical dictionary. CRC Press, Florida, p p 215Google Scholar
  21. Dunstan CA, Noreen Y, Serrano G, Cox PA, Perera P, Bohlin L (1997) Evaluation of some Samoan and Peruvian medicinal plants by prostaglandin biosynthesis and rat ear oedema assays. J Ethnopharmacol 57(1):35–56PubMedCrossRefGoogle Scholar
  22. El-Sohly HN, Joshi A, Li XC, Ross SA (1999) Flavonoids from Maclura tinctoria. Phytochemistry 52(1):141–145PubMedCrossRefGoogle Scholar
  23. Fearnside PM (1997) Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecol Manage 90:59–87CrossRefGoogle Scholar
  24. Gonçalves AL, Alves Filho A, Menezes H (2005) Estudo comparativo da atividade antimicrobiana de extratos de algumas árvores nativas. Arq Inst Biol São Paulo 72(3):353–358Google Scholar
  25. Goulding M (1983) The role of fishes in seed dispersal and plant distribution in Amazonian floodplain ecosystems. Sonderbd Naturwiss Ver Hamburg 7:271–283Google Scholar
  26. Grimes A, Alarcón R, Jahnige P, Loomis S, Burnham M, Onthank K, Neill D, Palacios W, Cerón C, Balick M, Bennett B, Mendelsohn R (1994) The economic value of non-timber forest products in Ecuador. Ambio 23:405–410Google Scholar
  27. Groweiss A, Cardellina JH, Boyd MR (2000) HIV-inhibitory prenylated xanthones and flavones from Maclura tinctoria. J Nat Prod 63:1537–1539PubMedCrossRefGoogle Scholar
  28. Gutjahr E (1996) Untersuchungen zur Optimierung der Ackernutzung in den Überschwemmung­swäldern (várzeas) am mittleren Amazonas. Studien zur Agrarökologie 21, Verlag Dr. Kovac, KielGoogle Scholar
  29. Henderson A, Galeano G, Bernal R (1995) Field guide to the palms of the Americas. Princeton University Press, New Jersey, p 351Google Scholar
  30. Herforth A, Ruiz J, Mosquera E, Laux M, Rodriguez E (2003) Antifungal plants of the Peruvian Amazon: a survey of ethnomedical uses and biological activity. In: Herforth AW, Gorospe K, Kheel J, Fraissinet P, Rosane D, Rodriguez E (eds) Emanations from the Rainforest and the Caribbean, vol. 4, Cornell UniversityGoogle Scholar
  31. Higuchi N, Hummel AC, Freitas JV, Malinowski JRE, Stokes R (1994) Exploração florestal nas várzeas do Estado do Amazonas: seleção de árvore, derrubada e transporte. Proceedings of the VII harvesting and transportation of timber products. IUFRO/UFPR, Curitiba, Brazil, pp 168–193Google Scholar
  32. Hiraoka M (1992) Caboclo and ribereño resource management in Amazonia: a review. In: Redford H, Padoch C (eds) Conservation of neotropical forests: working fom traditional resource use. Colombia University Press, New York, pp 134–157Google Scholar
  33. Hiruma-Lima CA, Calvo TR, Rodrigues CM, Andrade FD, Vilegas W, Souza Brito AR (2006) Antiulcerogenic activity of Alchornea castaneaefolia: effects on somatostatin, gastrin and prostaglandin. J Ethnopharmacol 104(1–2):215–224PubMedCrossRefGoogle Scholar
  34. Husseein AA, Bozzi B, Correa M, Capson TL, Kursar TA, Coley PD, Solis PN, Gupta MP (2003) Bioactive constituents from three Vismia species. J Nat Prod 66(6):858–860CrossRefGoogle Scholar
  35. IBAMA (2000) Projeto de manejo dos recursos naturais das várzeas. Manaus, p 64Google Scholar
  36. Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) (2000a) The central Amazon floodplain: actual use and options for a sustainable management. Backhuys Publishers b.V, LeidenGoogle Scholar
  37. Justi KC, Visentainer JV, Evelazio de Souza N, Matsushita M (2000) Nutritional composition and Vitamin C stability in stored camu-camu (Myrciaria dubia) pulp. Arch Latinoam Nutr 50(4):405–408PubMedGoogle Scholar
  38. Klenke M, Ohly JJ (1993) Wood from floodplains. In: Junk WJ, Bianchi HK (eds) 1st shift workshop, Belém, 1993. GKSS-Research Center, GeesthachtGoogle Scholar
  39. Kraus CM, Neszmelyi A, Holly S, Wiedemann B, Nenninger A, Torssell KB, Bohlin L, Wagner H (1998) New acetylenes isolated from the bark of Heisteria acuminata. J Nat Prod 61(4):422–427PubMedCrossRefGoogle Scholar
  40. Kvist LP, Nebel G (2001) A review of Peruvian flood plain forests: ecosystems, inhabitants and resource use. Forest Ecol Manage 150:3–26CrossRefGoogle Scholar
  41. Kvist LP, Andersen MK, Stagegaard J, Hesselsøe M, Llapapasca C (2001) Extraction from woody forest plants in flood plain communities in Amazonian Peru: use, choice, evaluation and conservation status of resources. Forest Ecol Manag 150:147–174CrossRefGoogle Scholar
  42. Le Cointe P (1922) L’Amazonie brésilienne. Augustin Challamel (ed.) Librairie Maritime et Coloniale, ParisGoogle Scholar
  43. Leung AY (1980) Encyclopedia of common natural ingredients used in food, drugs, and cosmetics. Wiley, New YorkGoogle Scholar
  44. Lima SRM, Veiga VF Jr, Christo HB, Pinto AC, Fernandes PD (2003) In vivo and in vitro studies on anticancer activity of Copaifera multijuga Hayne and its fractions. Phytother Res 17:1048–1053PubMedCrossRefGoogle Scholar
  45. Lipper L (2000) Forest degradation and food security. Unasilva (Forests, food security, and sustainable livelihoods), p 202Google Scholar
  46. Lopes NP, Kato MJ, Andrade EH, Maia JG, Yoshida M, Planchart AR, Katzin AM (1999) Antimalarial use of volatile oil from leaves of Virola surinamensis (Rol.) Warb. by Waiapi Amazon Indians. J Ethnopharmacol 67(3):313–319Google Scholar
  47. Lopez A, Hudson JB, Towers GHN (2001) Antiviral and antimicrobial activities of Colombian medicinal plants. J Ethnopharmacol 77(2–3):189–196PubMedCrossRefGoogle Scholar
  48. Luna FMS (2004) Ethnobotany of the communities of the upper Rio Nangaritza. Lyonia 7(2): 105–122Google Scholar
  49. Mabberley DJ (1997) The plant book, 2nd edn. Cambridge University Press, Cambridge, p 857Google Scholar
  50. Macedo DS, Anderson AB (1993) Early ecological changes associated with logging in an Amazon floodplain. Biotropica 25(2):151–163CrossRefGoogle Scholar
  51. Marques CA (2001) Importância econômica da família Lauraceae Lindl. Floresta e Ambiente 8(1):195–206Google Scholar
  52. Menton MC (2003) Effects of logging on non-timber forest product extraction in the Brazilian Amazon: community perceptions of change. Int Forest Rev 5(2):97–105CrossRefGoogle Scholar
  53. Mitaine-Offer AC, Sauvain M, Petermann C, Zeches-Hanrot M (2001) Constituents of the trunk bark of Maquira coriacea. Fitoterapia 72(7):841–843PubMedCrossRefGoogle Scholar
  54. Moretti C, Bhatnagar S, Beloeil JC, Polonsky J (1986) Two new quassinoids from Simaba multiflora fruits. J Nat Prod 49(3):440–444PubMedCrossRefGoogle Scholar
  55. Nebel G, Dragsted J, Salazar Vega A (2001a) Litter fall, biomass and net primary production in flood plain forests in the Peruvian Amazon. Forest Ecol Manag 150:93–102CrossRefGoogle Scholar
  56. Nielsen HB, Hazell A, Hazell R, Ghia F, Torrsell KBG (1994) Indole alkaloids and terpenoids from Tabernaemontana markgrafiana. Phytochemistry 37(6):1729–1735CrossRefGoogle Scholar
  57. Oga S, Sertie SA, Brasile AC, Hanada S (1981) Anti-inflammatory effect of crude extract from Guarea guidonia. Planta Med 42(3):310–312PubMedCrossRefGoogle Scholar
  58. Ohly JJ (2000a) Artificial pastures on Central Amazonian floodplains. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) The Central Amazon floodplain: actual use and options for a sustainable management. Backhuys Publishers bV, Leiden, The Netherlands, pp 291–311Google Scholar
  59. Padoch C (1988) The economic importance of marketing of forest and fallow products in the Iquitos region. Adv Econom Bot 5:74–89Google Scholar
  60. Parolin P (2000a) Growth, productivity, and use of trees in white water floodplains. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) The central Amazon floodplain: actual use and options for a sustainable management. Backhuys Publishers b.V, Leiden, pp 375–391Google Scholar
  61. Parotta JA, Francis JK, Almeida RR (1995) Trees of the Tapajós. A photographic field guide. Gen. Tech. Rep. IITF-1. Rio Pedras, PR. U.S. department of agriculture, Forest service, International Institute of Tropical Forestry, USAGoogle Scholar
  62. Payne L (1991) The alkaloids of Erythrina: clonal evaluation and metabolic fate. Ph.D. thesis, Department of Chemistry, Louisiana State University, p 160Google Scholar
  63. Peters CM, Gentry AH, Mendelsohn RO (1989) Valuation of an Amazonian rainforest. Nature 339:655–656CrossRefGoogle Scholar
  64. Phillips O, Gentry AH (1993) The useful plants of Tambopata, Peru. I: statistical hypothesis tests with a new quantitative technique. Econom Bot 47:15–32CrossRefGoogle Scholar
  65. Phillips O, Gentry AH, Wilkin P, Gálvez-Durand C (1994) Quantitative ethnobotany and Amazonian conservation. Conserv Biol 8(1):225–248CrossRefGoogle Scholar
  66. Piedade MTF, Parolin P, Junk WJ (2006) Phenology, fruit production and seed dispersal of Astrocaryum jauari (Arecaceae) in Amazonian black-water floodplains. Revista de Biologia Tropical 54:1171–1178PubMedGoogle Scholar
  67. Pinedo-Vásquez M, Zarin D, Jipp P, Chota-Inuma J (1990) Use values of tree species in a communal forest reserve in northeast Peru. Conserv Biol 4:405–416CrossRefGoogle Scholar
  68. Pretto JB, Cechinel-Filho V, Noldin VF, Sartori MRK, Isaias DEB, Cruz AB (2004) Antimicrobial activity of fractions and compounds from Calophyllum brasiliense (Clusiaceae/Guttiferae). Z Naturforsch 59c:657–662Google Scholar
  69. Reyes-García V, Huanca T, Vadez V, Leonard W, Wilkie D (2006) Cultural, practical, and economic value of wild plants: a quantitative study in the Bolivian Amazon. Econom Bot 60(1):1–13Google Scholar
  70. Ros-Tonen MAF (1993) Tropical hardwood from the Brazilian Amazon. Verlag Breitenbach Publishers, Saarbrücken-Fort LauterdaleGoogle Scholar
  71. Rovinski JM, Gregory LT, Sneden AT (1987) Maquiroside A, a new cytotoxic cardiac glycoside from Maquira calophylla. J Nat Prod 50(2):211–216PubMedCrossRefGoogle Scholar
  72. Santos R (1980) História econômica da Amazônia (1800–1920). TA Queiroz, São PauloGoogle Scholar
  73. Santos SRM, Miranda IS, Tourinho MM (2004) Análise floristica e estrutural de sistemas agroflorestais das várzeas do Rio Juba, Cametá, Pará. Acta Amazônica 34(2):251–263CrossRefGoogle Scholar
  74. Seigler DS (2005) Cyanogenic glycosides and menisdaurin from Guazuma ulmifolia, Ostrya virgininana, Tiquilia plicata and Tiquilia canescens. Phytochemistry 66(13):1567–1580PubMedCrossRefGoogle Scholar
  75. Shanley P, Luz L, Cymerys M (2002) Subsistence issues: the interface of timber and non-timber resources: declining resources for subsistence livelihoods (Brazil). In: Shanley P, Pierce AR, Laird SA, Guillén A (eds) Tapping the green market: certification and management of non-timber forest products. Earthscan, London, pp 313–321Google Scholar
  76. Silva MF (1977) Nomes vulgares de plantas amazônicas. Instituto Nacional de Pesquisas da Amazônia – INPA, ManausGoogle Scholar
  77. Sousa FC, Melo CT, Monteiro AP, Lima VT, Gutierrez SJ, Pereira BA, Barbosa-Filfo JM, Vasconselos SM, Viana GS (2004) Antianxiety and antidepressant effects of riparin III from Aniba riparia (Nees) Mez (Lauraceae) in mice. Pharmacol Biochem Behav 78(1):27–33PubMedCrossRefGoogle Scholar
  78. Stadtler EWC (2007) Estimativas de biomassa lenhosa, estoque e seqüestro de carbono acima do solo ao longo do gradiente de inundação em uma floresta de igapó alagada por água preta na Amazônia Central. M.Sc. thesis, INPA/UFAM, Manaus, BrazilGoogle Scholar
  79. Suffredini IB, Varella D, De Oliveira AA, Younes RN (2002) In-vitro anti-HIV and antitumor evaluation of Amazonian plants belonging to the Apocynaceae family. Phytomedicine 9:175PubMedCrossRefGoogle Scholar
  80. Ter Steege H (2000) Plant diversity in Guyana. With recommendation for a protected areas strategy. Tropenbos Series 18, Tropenbos Foundation, WageningenGoogle Scholar
  81. Wittmann F, Anhuf D, Junk WJ (2002b) Tree species distribution and community structure of central Amazonian várzea forests by remote-sensing techniques. J Trop Ecol 18: 805–820CrossRefGoogle Scholar
  82. Wittmann F, Junk WJ (2003) Sapling communities in Amazonian white-water forests. J Biogeogr 30:1533–1544CrossRefGoogle Scholar
  83. Wittmann F, Junk WJ, Piedade MTF (2004) The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. Forest Ecol Management 196:199–212CrossRefGoogle Scholar
  84. Wittmann F, Schöngart J, Montero JC, Motzer M, Junk WJ, Piedade MTF, Queiroz HL, Worbes M (2006) Tree species composition and diversity gradients in white-water forests across the Amazon Basin. J Biogeogr 33:1334–1347CrossRefGoogle Scholar
  85. Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsating system. Ecolog Stud 126:223–265. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  86. Worbes M, Klinge H, Revilla JD, Martius C (1992) On the dynamics, floristic subdivision and geographical distribution of várzea forests in Central Amazonia. J Vegetat Sci 3:553–564CrossRefGoogle Scholar
  87. Worbes M, Piedade MTF, Schöngart J (2001) Holzwirtschaft im Mamirauá-Projekt zur nachhaltigen Entwicklung einer Region im Überschwemmungsbereich des Amazonas. Forstarchiv 72:188–200Google Scholar
  88. Ziburski A (1991) Dissemination, Keimung und Etablierung einiger Baumarten der Überschwemmungswälder Amazoniens. In: Rauh W (ed) Tropische und subtropische Pflanzenwelt. Akademie der Wissenschaften und der Literatur 77:1–96Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Florian Wittmann
    • 1
    Email author
  • Astrid de Oliveira Wittmann
    • 2
  1. 1.Biogeochemistry DepartmentMax Planck Institute for ChemistryMainzGermany
  2. 2.National Institute of Amazon Research (INPA)ManausBrazil

Personalised recommendations