Advertisement

Biomass and Net Primary Production of Central Amazonian Floodplain Forests

  • Jochen SchöngartEmail author
  • Florian Wittmann
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 210)

Abstract

In this chapter the existing knowledge on biomass in floodplain forests and the compounds that contribute to their net primary production (NPP) are presented and discussed in comparison with data from non-flooded upland (terra firme) forests. Fine litterfall in old-growth floodplain forests are similar to litterfall data from terra firme forests. The few existing estimates of root biomass in nutrient-rich white-water floodplain forests (várzea) indicate lower belowground biomasses in floodplain forests than in terra firme forests due to regular flooding which limits the development of deep roots. Along the chronosequence, C-storage in the aboveground coarse live wood biomass (AGWB) of várzea forests indicates a strong increase during the first 50–80 years of successional development, but afterwards no increase in AGWB can be observed. On the other hand C-sequestration in the AGWB of várzea forests declines more than threefold along the successional gradient. In comparison to terra firme forest, the várzea forests have lower C-stocks, but a higher C-sequestration in the AGWB. The estimated aboveground NPP in young successional stages of the central Amazonian várzea is among the highest NPP known for tropical forests, while the NPP of the late succession in the várzea is in the upper range of the NPP of old-growth forests in the terra firme. The available database for nutrient-poor floodplain forests (igapó) is insufficient to estimate their NPP. Climate-growth relationships of tree-ring chronologies of species from central Amazonian terra firme and floodplain forests indicate opposing signals during El Niño years. During these events large areas of terra firme forests release carbon to the atmosphere due to the warmer and drier climate conditions, while the weakened flood-pulse favours tree growth in the floodplain forests which might therefore sequester parts of the climate-induced carbon emissions of terra firme forests.

Keywords

Successional Stage Wood Density Floodplain Forest Allometric Model Terra Firme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This study was supported by the SHIFT Program ENV-29/2 (CNPq-BMBF) and the INPA/Max-Planck Project. We acknowledge Celso Rabelo Costa and Jackson de Castro for technical assistance during the field work and thank Eberhard F. Bruenig for his careful review and valuable comments on this chapter.

References

  1. Aalto R, Maurice-Bourgoin L, Dunne T, Montgomery DR, Nittrouer CA, Guyot J-L (2003) Episodic sediment accumulation on Amazonian flood plains influenced by El Niño/Southern oscillation. Nature 425:493–497PubMedCrossRefGoogle Scholar
  2. Adis J, Latif M (1996) Amazonian arthropods respond to El Niño. Biotropica 28:403–408CrossRefGoogle Scholar
  3. Adis J, Furch K, Irmler U (1979) Litter production of a central Amazonian blackwater inundation forest. Tropical Ecology 20:236–245Google Scholar
  4. Almeida SS, Amaral DD, Silva ASL (2004) Análise florística e estrutura de florestas de Várzea no estuário amazônica. Acta Amazonica 34(4):513–524CrossRefGoogle Scholar
  5. Alves DS, Soares JV, Amaral S, Mello EMK, Almeida SAS, Silva OF, Silveira AM (1997) Biomass of primary and secondary vegetation in Rondônia, Western Brazilian Amazon. Global Change Biol 3:451–461CrossRefGoogle Scholar
  6. Amarasekera KN, Lee RF, Williams ER, Eltahir EAB (1997) ENSO and the natural variability in the flow of tropical rivers. J Hydrol 200:24–39CrossRefGoogle Scholar
  7. Asner GP, Knapp DE, Broadbent EN, Oliveira PJC, Keller M, Silva JNM (2005) Selective logging in the Brazilian Amazon. Science 310:480–482PubMedCrossRefGoogle Scholar
  8. Ayres JM (1993) As matas de várzea do Mamirauá. In: Sociedade civil Mamirauá (ed) Estudos de Mamirauá, vol.1. Sociedade civil Mamirauá, Mamirauá, pp 1–123Google Scholar
  9. Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Núñez Vargas P, Pitman NCA, Silva JNM, Vásquez Martínez R (2004a) Increasing biomass in Amazonia forest plots. Philos T Roy Soc B 359:353–365CrossRefGoogle Scholar
  10. Berish CW (1982) Root biomass and surface area in tree successional forests. Can J Forest Res 12:699–704CrossRefGoogle Scholar
  11. Bernoux M, Graça PMA, Cerri CC, Fearnside PM, Feigl BJ, Piccolo MC (2001) Carbon storage in biomass and soils. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, London, pp 165–184Google Scholar
  12. Bosshard HH (1984) Holzkunde, 2. Auflage, Bd. 2: Zur Bologie, Physik und Chemie des Holzes. Birkhäuser, BaselGoogle Scholar
  13. Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12PubMedCrossRefGoogle Scholar
  14. Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper 134, Rome, ItalyGoogle Scholar
  15. Brown S, Lugo AE (1992) Aboveground biomass estimates for tropical moist forests of Brazilian Amazon. Interciencia 17:8–18Google Scholar
  16. Brown S, Gillespie A, Lugo A (1989) Biomass estimation methods for tropical forests with application to forest inventory data. Forest Sci 35:881–902Google Scholar
  17. Budowski G (1961) Studies on forest succession in Costa Rica and Panama. Ph.D. thesis, New Haven, Yale UniversityGoogle Scholar
  18. Cannell MGR (1984) Woody biomass of forest stands. Forest Ecol Manage 8:299–312CrossRefGoogle Scholar
  19. Cattanio JH, Anderson AB, Rombold JS, Nepstad DC (2004) Phenology, litterfall, growth, and root biomass in a tidal floodplain forest in Amazon estuary. Revista Brasileira de Botânica 4:703–712Google Scholar
  20. Chambers JQ, Higuchi N, Schimmel JP (1998) Ancient trees in Amazonia. Nature 391:135–136CrossRefGoogle Scholar
  21. Chambers JQ, Santos J, Ribeiro RJ, Higuchi N (2001) Tree damage, allometric relationships, and above-ground net primary production in Central Amazon forest. Forest Ecol Manag 152:73–84CrossRefGoogle Scholar
  22. Chave J, Riéra B, Dubois M-A (2001) Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. J Trop Ecol 17:79–96CrossRefGoogle Scholar
  23. Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004) Error propagation and scaling for tropical forest biomass estimates. Philos T Roy Soc B 359:409–420CrossRefGoogle Scholar
  24. Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J-P, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99PubMedCrossRefGoogle Scholar
  25. Clark DA (2002) Are tropical forests an important carbon sink? Reanalysis of the long-term plot data. Ecol Appl 12:3–7CrossRefGoogle Scholar
  26. Clark DA (2004) Sources or sinks? The response of tropical forests to current and future climate and atmospheric compositions. Philos T Roy Soc B 359:477–491CrossRefGoogle Scholar
  27. Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA (2001) Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl 11:371–384CrossRefGoogle Scholar
  28. Clark DA, Clark DB (1994) Climate-induced annual variations in canopy tree growths in a Costa Rican tropical rain forests. J Ecol 82:865–872CrossRefGoogle Scholar
  29. Clark DA, Piper SC, Keeling CD, Clark DB (2003) Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. PNAS 100:5852–5857PubMedCrossRefGoogle Scholar
  30. Clements FE (1936) Nature and structure of the climax. J Ecol 24:252–284CrossRefGoogle Scholar
  31. Cochrane MA (2003) Fire science for rainforests. Nature 421:913–919PubMedCrossRefGoogle Scholar
  32. Coe MT, Costa MH, Botta A, Birkett C (2002) Long-term simulations of discharge and floods in the Amazon Basin. J Geophys Res-Atmos 107(D20):8044. doi:10.1029/2001JD000740Google Scholar
  33. Costa MH, Foley JA (2002) Combined effects of deforestation and doubled CO2 concentrations on the climate of Amazonia. J Climate 13:18–34CrossRefGoogle Scholar
  34. Costa MH, Botta A, Cardille J (2003) Effects of large-scale change in land cover on the discharge of the Tocantins River, Amazonia. J Hydrol 283:206–217CrossRefGoogle Scholar
  35. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187PubMedCrossRefGoogle Scholar
  36. Elias M, Potvin C (2003) Assessing intra- and inter-specific variation in trunk carbon concentration for 32 neotropical tree species. Can J Forest Res 33:1039–1045CrossRefGoogle Scholar
  37. Fearnside PM (1997) Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecol Manage 90:59–87CrossRefGoogle Scholar
  38. Fearnside PM, Guimarães WM (1996) Carbon uptake by secondary forests in Brazilian Amazonia. Forest Ecol Manag 80:35–46CrossRefGoogle Scholar
  39. Ferreira LV (1991) O efeito do periodo de inundação na zonação de comunidades, fenologia e regeneração em uma floresta de igapó na Amazonia Central. Master Thesis, INPA, Manaus, p 161Google Scholar
  40. Ferreira LV (1998) Intraspecific variation in phenology in relation to flooding duration in Eschweilera parviflora (Lecythidaceae) in central Amazonian floodplain forest. An Acad Bras Ci 70:1–4Google Scholar
  41. Fichtler E, Clark DA, Worbes M (2003) Age and long-term growth of trees in an old-growth tropical rain forest, based on analyses of tree rings and 14C. Biotropica 35:306–317Google Scholar
  42. Foley JA, Botta A, Coe MT, Costa MH (2002) El Niño-Southern oscillation and the climate, ecosystems and rivers of Amazonia. Global Biogeochem Cy 16(4):1132. doi: 10.1029/2002GB001872 CrossRefGoogle Scholar
  43. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574PubMedCrossRefGoogle Scholar
  44. Franken M, Irmler U, Klinge H (1979) Litterfall in inundation, riverine and terra firme forests of Central Amazonia. Trop Ecol 20(2):225–235Google Scholar
  45. Funck J (2004) Untersuchungen zur Wachstumsdynamik von Cariniana micrantha (Ducke) in der Nähe von Itacoatiara/Amazonien. M.Sc. Thesis, University FreiburgGoogle Scholar
  46. Furch K (1997) Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecolog Stud 126:47–68. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  47. Grace J, Lloyd J, McIntyre J, Miranda AC, Meir P, Miranda HS, Nobre CA, Moncrieff J, Massheder J, Malhi Y, Wright I, Gash J (1995) Carbon dioxide uptake by an undisturbed tropical rain forest in Southwest Amazonia. Science 270:778–780CrossRefGoogle Scholar
  48. Grace J, Malhi Y (2002) Carbon dioxide goes with the flow. Nature 416:594–595PubMedCrossRefGoogle Scholar
  49. Guariguata MR, Ostertag R (2001) Neotropical secondary succession: changes in structural and functional characteristics. Forest Ecol Manag 148:1142–1149CrossRefGoogle Scholar
  50. Guenther ACH, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay W, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emission. J Geophys Res 100(D5):8873–8892Google Scholar
  51. Harley PC, Monson RK, Lerdou MT (1999) Ecological and evolutionary aspects of isoprene emission from plants. Oecologia 118:109–123CrossRefGoogle Scholar
  52. Harris PP, Huntingford C, Cox PM (2008) Amazon Basin climate under global warming: the role of the sea surface temperature. Philos T Roy Soc B 363. doi:10.1098/rstb.2007.0037Google Scholar
  53. Haugaasen T, Peres CA (2005) Tree phenology in adjacent Amazonian flooded and unflooded forests. Biotropica 37(4):620–630CrossRefGoogle Scholar
  54. Horna V (2002) Carbon release from woody parts of trees from a seasonally flooded Amazon forest near Manaus, Brasil. Bayreuther Forum Ökologie 94:1–137Google Scholar
  55. Houghton RA, Skole DL, Nobre CA, Hackler JL, Lawrence KT, Chomentowski WH (2000) Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature 403:301–304PubMedCrossRefGoogle Scholar
  56. IPCC (2007) Climate change 2007: the physical science basis: summary for policymakers and technical summary. Working group I of the intergovernmental panel on climate change (IPCC), WMO & UNEP, Geneva, SwitzerlandGoogle Scholar
  57. Jordan CF (1983) Productivity of tropical rain forest ecosystems and the implication for their use as future wood and energy resources. In: Golley FB (ed) Tropical rain forest ecosystems. Ecosystems of the World 14 A. Elsevier, Amsterdam, pp 117–136Google Scholar
  58. Junk WJ (1985) The Amazon floodplain – a sink or a source of organic carbon? In: Degin ET, Kempe S, Herrera R (eds) Transport of carbon in the major World rivers. Part 3. Mitt Geol-Paläont Inst 58:267–283Google Scholar
  59. Junk WJ (1989) Flood tolerance and tree distribution in central Amazonian floodplains. In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests: botanical dynamics, speciation and diversity. Academic Press, New York, pp 47–64Google Scholar
  60. Junk WJ (1993) Wetlands of tropical South America. In: Whigham D, Hejny S, Dykyjova D (eds) Wetlands of the world. Junk Publications, Dordrecht, pp 679–739Google Scholar
  61. Keller M, Palace M, Hurtt G (2001) Biomass estimation in the Tapajos National Forest, Brazil – examination of sampling and allometric uncertainties. Forest Ecol Manag 154:371–382CrossRefGoogle Scholar
  62. Kesselmeier J, Ciccioli P, Kuhn U, Stefani P, Biesenthal T, Rottenberger S, Wolf A, Vitullo M, Valentini R, Nobre AD, Kabat P, Andreae MO (2002) Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget. Global Biogeochem Cy 16(4):1126. doi: 10.1029/2001GB001813 CrossRefGoogle Scholar
  63. Ketterings QM, Coe R, Van Noordwijk M, Ambagau Y, Palm CA (2001) Reducing uncertainty in the use of allometric biomass equations for predicting above-ground biomass in mixed secondary forests. Forest Ecol Manag 146:199–209CrossRefGoogle Scholar
  64. Klinge H (1973) Root mass estimation in lowland tropical rain forests of Central Amazon, Brazil. I. Fine root masses of a pale yellow latosol and a giant humus podzol. Trop Ecol 14(1):29–38Google Scholar
  65. Klinge H (1978a) Litter production in tropical ecosystems. Malayan Nat J 30(2):415–422Google Scholar
  66. Klinge H, Rodrigues WA (1968) Litter production in an area of Amazonian terra firme forest. Part I. Litter-fall, organic carbon and total nitrogen contents of litter. Amazoniana I(4):287–302Google Scholar
  67. Klinge H, Rodrigues WA, Bruenig E, Fittkau EJ (1975) Biomass and structure in a Central Amazonian forest. In: Golley FB, Medina E (eds) Trends in terrestrial and aquatic research. Springer, New York, pp 115–122Google Scholar
  68. Klinge H, Herrera R (1983) Phytomass structure of natural plant communities on spodosols in southern Venezuela: the tall Amazon Caatinga forest. Vegetatio 53:65–84CrossRefGoogle Scholar
  69. Klinge H, Adis J, Worbes M (1996) The vegetation of a seasonal várzea forest in the lower Solimões River, Amazon region of Brazil. Acta Amazonica 25(3–4):201–220Google Scholar
  70. Komiyama A, Ogino K, Aksonkoae S, Sabhasri S (1987) Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. J Trop Ecol 3:97–108CrossRefGoogle Scholar
  71. Laurance WF, Fearnside PM, Laurance SG, Delamonica P, Lovejoy TE, Rankin-de-Merona JM, Chambers JQ, Gascon C (1999) Relationship between soils and Amazon forest biomass: a landscape-scale study. Forest Ecol Manag 118:127–138CrossRefGoogle Scholar
  72. Laurance WF, Cochrane MA, Bergen S, Fearnside PM, Delamonica P, Barber C, D’Angelo S, Fernandes T (2001) Environment – the future of the Brazilian Amazon. Science 291:438–439PubMedCrossRefGoogle Scholar
  73. Laurance WF, Nascimento HEM, Laurance SG, Condit R, D’Angelo S, Andrade A (2004) Inferred longevity of Amazonian rainforest trees based on a long-term demographic study. Forest Ecol Manag 190:131–143CrossRefGoogle Scholar
  74. Loehle C (1988) Tree life history strategies: the role of defenses. Can J Forest Res 18:209–222CrossRefGoogle Scholar
  75. Lugo AE (1992) Comparison of tropical tree plantations with secondary forests of similar age. Ecol Monogr 62(1):1–41CrossRefGoogle Scholar
  76. Luizão FJ (1989) Litter production and mineral element input to the forest floor in a central Amazonian forest. GeoJournal 19:407–417CrossRefGoogle Scholar
  77. Malhi Y, Nobre AD, Grace J, Kruijt B, Pereira MGP, Culf A, Scott S (1998) Carbon dioxide transfer over a central Amazonian rain forest. J Geophys Res 103(D24):31593–31612Google Scholar
  78. Malhi Y, Baker TR, Phillips OL, Almeida S, Alvarez E, Arroyo L, Chave J, Czimczik CI, Di Fiore A, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis LL, Montoya LMM, Monteagudo A, Neill DA, Núñez Vargas P, Patiño S, Pitman NCA, Quesada CA, Salomão R, Silva JNM, Lezama AT, Martínez RV, Terborgh J, Vinceti B, Lloyd J (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biol 10:563–591CrossRefGoogle Scholar
  79. Malhi Y, Wood D, Baker TR, Wright J, Phillips OL, Cochrane T, Meir P, Chave J, Almeida S, Arroyo L, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Núñez Vargas P, Pitman NCA, Quesad CA, Salomão R, Silva JNM, Lezama AT, Terborgh J, Martínez RV, Vinceti B (2006) The regional variation o aboveground live biomass in old-growth Amazonian forests. Global Change Biol 12:1107–1138CrossRefGoogle Scholar
  80. Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deorestation, and fate of the Amazon. Science 319:169–172PubMedCrossRefGoogle Scholar
  81. Marengo JA (1992) Interannual variability of surface climate in the Amazon basin. J Climatol 12:853–863CrossRefGoogle Scholar
  82. Marengo JA, Tomasella J, Uvo CR (1998) Trends in streamflow and rainfall in tropical South America: Amazonia, eastern Brazil and north-western Peru. J Geophys Res 103(D2):1775–1783Google Scholar
  83. Marengo JA, Nobre CA, Tomasella J, Cardoso MF, Oyama MD (2008) Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philos T Roy Soc B 363:1773–1778CrossRefGoogle Scholar
  84. Martius C (1992) Density, humidity, and nitrogen content of dominant wood species of floodplain forests (várzea) in Amazonia. Holz Roh Werkst 50:300–303CrossRefGoogle Scholar
  85. Medina E, Klinge H (1983) Productivity of tropical forests and tropical woodlands. Encyclopedia Plant Physiol 12D:281–303. Springer, Berlin, HeidelbergGoogle Scholar
  86. Meyer U (1991) Feinwurzelsysteme und Mykorrhizatypen als Anpassungsmechanismen in zentralamazonischen Überschwemmungswäldern- Igapó and Várzea. Ph.D. thesis, University of Hohenheim, GermanyGoogle Scholar
  87. Meyer U, Junk WJ, Linck C (2010) Fine root systems and mycorrhizal associations in two central Amazonian floodplain forests – igapó and várzea. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  88. Moreira KS (2006) Avaliação da sazonalidade sobre a dinâmica de liteira em uma floresta de transição no Parque Estadual do Cantão, entorno da Ilha do Bananal, estado do Tocantins. Universidade Federal do TocantinsGoogle Scholar
  89. Nebel G, Dragsted J, Salazar Vega A (2001a) Litter fall, biomass and net primary production in flood plain forests in the Peruvian Amazon. Forest Ecol Manag 150:93–102CrossRefGoogle Scholar
  90. Nepstad DC, Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, Silva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669CrossRefGoogle Scholar
  91. Nepstad DC, Veríssimo A, Alencar A, Nobre CA, Lima E, Lefebvre P, Schlesinger P, Potter C, Moutinho P, Mendoza E, Cochrane M, Brooks V (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505–508CrossRefGoogle Scholar
  92. Nepstad DC, Stickler CM, Soares-Filho BS, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos T Roy Soc B 363:1737–1746CrossRefGoogle Scholar
  93. Ometto JPHB, Nobre AD, Rocha HR, Artaxo P, Martinelli LA (2005) Amazônia and the modern carbon cycle: lessons learned. Oecologia 143:483–500PubMedCrossRefGoogle Scholar
  94. Overman JPM, Witte HJL, Saldarriaga JG (1994) Evaluation of regression models for above-ground biomass determination in Amazon rain forest. J Trop Ecol 10:207–218CrossRefGoogle Scholar
  95. Panshin AJ, De Zeeuw C (1980) Textbook of wood technology, 4th edn. MacGraw-Hill, New YorkGoogle Scholar
  96. Parolin P (2002a) Life history and environment of Cecropia latiloba in Amazonian floodplains. Rev Biol Trop 50:531–545PubMedGoogle Scholar
  97. Parolin P (2002b) Radial gradients in wood specific gravity in trees of central Amazonian floodplains. IAWA J 23(4):449–457Google Scholar
  98. Parolin P, Ferreira LV (1998) Are there differences in specific wood gravities between trees in várzea and igapó (Central Amazonia)? Ecotropica 4:25–32Google Scholar
  99. Parolin P, Ferreira LV, Junk WJ (1998) Central Amazonia floodplains: effect of two water types on the wood density of trees. Verh Internat Verein Limnol 26:1106–1112Google Scholar
  100. Parolin P, Worbes M (2000) Wood density of trees in black water floodplains of Rio Jaú National Park, Amazonia. Acta Amazonica 30(3):441–448Google Scholar
  101. Parolin P, Adis J, Rodrigues WA, Amaral I, Piedade MTF (2004a) Floristic study of an igapó floodplain forest in Central Amazonia, Brazil (Tarumã-Mirim, Rio Negro). Amazoniana 18(1/2):29–47Google Scholar
  102. Parolin P, Lucas C, Piedade MTF, Wittmann F (2010) Drought responses of extremely flood tolerant trees of Amazonian floodplains. Annal Bot 105(1):129–139Google Scholar
  103. Peacock J, Baker TR, Lewis SL, Lopez-Gonzalez G, Phillips OL (2007) The RAINFOR database: monitoring forest biomass and dynamics. J Veg Sci 18:535–542CrossRefGoogle Scholar
  104. Peixoto JMA (2007) Monitoramento da dinâmica da geomorfologia fluvial da Reserva de Desenvolvimento Sustentável Mamirauá, por meio de técnicas de sensoriamento remoto. M.Sc. thesis INPA/UFAM, Manaus, BrazilGoogle Scholar
  105. Phillips OL, Malhi Y, Higuchi N, Laurance WF, Núñez Vargas P, Vásquez Martinez R, Laurance SG, Ferreira LV, Stern M, Brown S, Grace J (1998) Changes in the carbon balance of tropical forests: evidence of long-term plots. Science 282:439–442PubMedCrossRefGoogle Scholar
  106. Phillips OL, Lewis SL, Baker TR, Chao K-J, Higuchi N (2008) The changing Amazon forest. Philos T Roy Soc B 363:1819–1827CrossRefGoogle Scholar
  107. Piedade MTF, Worbes M, Junk WJ (2001) Geo-ecological controls on elemental fluxes in communities of higher plants in Amazonian floodplains. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, New York, p 209–234Google Scholar
  108. Piedade MTF, Ferreira CS, Oliveira Wittmann A de, Buckeride M, Parolin P (2010) Biochemistry of Amazonian floodplain trees. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  109. Prance GT (1979) Notes on the vegetation of Amazonia. 3. The terminology of Amazonian forest types subject to inundation. Brittonia 31:26–38CrossRefGoogle Scholar
  110. Prentice IC, Lloyd J (1998) C-quest in the Amazon Basin. Nature 396:619–620CrossRefGoogle Scholar
  111. Pretzsch H (2001) Modellierung des Waldwachstums. Parey Buchverlag, BerlinGoogle Scholar
  112. Queiroz HL, Peralta N (2010) Protected areas in Amazonian várzea and their role in its conservation: the case of Mamirauá Sustainable Development Reserve (MSDR). In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  113. Richey JE, Nobre CA, Deser C (1989) Amazon river discharge and climate variability: 1903–1985. Science 246:101–103PubMedCrossRefGoogle Scholar
  114. Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620PubMedCrossRefGoogle Scholar
  115. Rottenberger S (2003) Exchange of oxygenated volatile organic compounds between Amazonian and European vegetation and atmosphere. Ph.D. thesis, University of MainzGoogle Scholar
  116. Roy J, Saugier B, Mooney HA (2001) Terrestrial global poroductivity. Academic Press, San Diego, CaliforniaGoogle Scholar
  117. Saatchi SS, Houghton RA, Alvalá RCS, Soares JV, Yu Y (2007) Distribution of aboveground live biomass in the Amazon basin. Global Change Biol 13:813–837CrossRefGoogle Scholar
  118. Saldarriaga JG (1987) Recovery following shifting cultivation. A century of succession in the upper Rio Negro. In: Jordan CF (ed) Amazonian rain forests: ecosystem disturbance and recovery. Springer, New York, pp 24–33CrossRefGoogle Scholar
  119. Saldarriaga JG, West DC, Tharp ML, Uhl C (1988) Long-term chronosequence of forest succession in the upper Rio Negro of Columbia and Venezuela. J Ecol 76:938–958CrossRefGoogle Scholar
  120. Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, Rocha HR, Camargo PB, Crill P, Daube BC, Freitas HC, Hutyra L, Keller M, Kirchoff V, Menton M, Munger JW, Pyle EH, Rice AH, Silva H (2003) Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557PubMedCrossRefGoogle Scholar
  121. Salo J, Kalliola R, Häkkinen L, Mäkinen Y, Niemelä P, Puhakka M, Coley PD (1986) River dynamics and the diversity of Amazon lowland forest. Nature 322:254–258CrossRefGoogle Scholar
  122. Sanford RL (1989) Root system of three adjacent, old growth Amazon forests and associated transition zones. J Trop For Sci 1:268–279Google Scholar
  123. Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B III, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172PubMedCrossRefGoogle Scholar
  124. Schlüter UB, Furch B (1992) Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz des Baumes Macrolobium acaciaefolium, charakteristisch für die Weißund Schwarzwasser-Überschwemmungswälder bei Manaus, Amazonas. Amazoniana 12:51–69Google Scholar
  125. Schöngart J (2008) Growth-Oriented Logging (GOL): a new concept towards sustainable forest management in Central Amazonian várzea floodplains. Forest Ecol Manag 256:46–58CrossRefGoogle Scholar
  126. Schöngart J, Junk WJ (2007) Forecasting the flood-pulse in Central Amazonia by ENSO-indices. J Hydrol 335:124–132CrossRefGoogle Scholar
  127. Schöngart J, Piedade MTF, Ludwigshausen S, Horna V, Worbes M (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597CrossRefGoogle Scholar
  128. Schöngart J, Junk WJ, Piedade MTF, Ayres JM, Hüttermann A, Worbes M (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño-Southern oscillation effect. Global Change Biol 10:683–692CrossRefGoogle Scholar
  129. Schöngart J, Piedade MTF, Wittmann F, Junk WJ, Worbes M (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:654–661CrossRefGoogle Scholar
  130. Schöngart J, Wittmann F, Worbes M, Piedade MTF, Krambeck H-J, Junk WJ (2007) Management criteria for Ficus insipida Willd. (Moraceae) in Amazonian white-water floodplain forests defined by tree-ring analysis. Ann For Sci 64:657–664CrossRefGoogle Scholar
  131. Schweingruber FH (1996) Tree rings and environment. Dendroecology. Birmensdorf, Swiss Federal Institute for Forest, Snow and Landscape Research, WSL/FNP. Berne, Stuttgart, ViennaGoogle Scholar
  132. Silva MFF (1982) Nota sobre decomposição de materia orgânica em floresta de terra firme, várzea e igapó. M.Sc. thesis, INPA/UFAM, Manaus, BrazilGoogle Scholar
  133. Silva MFF (1984) Produção de serrapilheira e seu conteúdo minerológico em mata de terra firme, Tucurui (PA). Boletim do Museu Emilio Goeldi (Série Botânica) 1:111–152Google Scholar
  134. Sioli H (1954a) Beiträge zur regionalen Limnologie des Amazonasgebietes. Archiv für Hydrobiologie 45:267–283Google Scholar
  135. Soares-Filho BS, Nepstad DC, Curran LM, Cerqueira GC, Garcia RA, Azevedo Ramos C, Voll E, McDonald A, Lefebvre P, Schlesinger P (2006) Modelling conservation in the Amazon basin. Nature 440:520–523PubMedCrossRefGoogle Scholar
  136. Sombroek W (2001) Spatial and temporal patterns of Amazon rainfall. Ambio 30:388–396PubMedGoogle Scholar
  137. Stark N, Spratt M (1977) Root biomass and nutrient storage in rain forest Oxisols near San Carlos de Rio Negro. Trop Ecol 18:1–9Google Scholar
  138. Swaine MD, Whitmore TC (1988) On the definition of ecological species groups in tropical rain forests. Vegetatio 75:81–86CrossRefGoogle Scholar
  139. Terborgh J, Petren K (1991) Development of habitat structure through succession in an Amazonian floodplain forest. In: Bell SS (ed) Habitat Structure. Chapman and Hall, London, pp 28–46CrossRefGoogle Scholar
  140. Tian H, Melillo JM, Kicklighter DW, McGuire AD, Helfrich JVK, Moore B III, Vörösmarty CJ (1998) Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396:664–667CrossRefGoogle Scholar
  141. Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–697CrossRefGoogle Scholar
  142. Vargas R, Allen MF, Allen EB (2008) Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical. Global Change Biol 14:109–124Google Scholar
  143. Viera S, Trumbore S, Camargo PB, Selhorst D, Chambers JQ, Higuchi N, Martinelli LA (2005) Slow growth rate of Amazonian trees: consequences for carbon cycling. PNAS 102:18502–18507CrossRefGoogle Scholar
  144. Whetton P, Rutherfurd I (1994) Historical ENSO teleconnection in the eastern hemisphere. Climat Change 28:221–253CrossRefGoogle Scholar
  145. White A, Cannell MGR, Friend AD (1999) Climate change impacts on ecosystems in the terrestrial carbon sink: new assessment. Global Environ Chang 9:S21–S30CrossRefGoogle Scholar
  146. Whittaker RH (1953) A consideration of climax theory: the climax as a population and pattern. Ecol Monogr 23:41–78CrossRefGoogle Scholar
  147. Wiemann MC, Williamson GB (1989) Wood specific gravity gradients in tropical dry and montane forest trees. Am J Bot 76:924–928CrossRefGoogle Scholar
  148. Williams E, Antonia AD, Antonia VD, Almeida JD, Suarez F, Liebmann B, Malhado ACM (2005) The drought of the century in the Amazon basin: an analysis of the regional variation of rainfall in South America in 1926. Acta Amazonica 35:231–238CrossRefGoogle Scholar
  149. Wittmann F, Anhuf D, Junk WJ (2002a) Detection of different forest types in Central Amazonian Várzea by remote sensing techniques – preliminary results. In: Lieberei R, Bianchi H-K, Boehm V, Reisdorff C (eds) Neotropical ecosystems. Proceedings of the German-Brazilian Workshop, Hamburg 2000, GKSS-Geesthacht, Germany, pp 607–661Google Scholar
  150. Wittmann F, Anhuf D, Junk WJ (2002b) Tree species distribution and community structure of central Amazonian várzea forests by remote-sensing techniques. J Trop Ecol 18: 805–820CrossRefGoogle Scholar
  151. Wittmann F, Junk WJ (2003) Sapling communities in Amazonian white-water forests. J Biogeogr 30:1533–1544CrossRefGoogle Scholar
  152. Wittmann F, Schöngart J, Montero JC, Motzer M, Junk WJ, Piedade MTF, Queiroz HL, Worbes M (2006) Tree species composition and diversity gradients in white-water forests across the Amazon Basin. J Biogeogr 33:1334–1347CrossRefGoogle Scholar
  153. Wittmann F, Schöngart J, Junk WJ (2010) Phytogeography, species diversity, community structure and dynamics of central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  154. Worbes M (1989) Growth rings, increment and age of tree in inundation forest, savannas and a mountain forest in the Neotropics. IAWA Bull 10(2):109–122Google Scholar
  155. Worbes M (1994) Grundlagen und Anwendungen der Jahresringforschung in den Tropen. Universität of Hamburg, HabilitationsschriftGoogle Scholar
  156. Worbes M (1996) Rhythmisches Wachstum und anatomisch-morphologische Anpassungen an Lebensstrategien von Bäumen in zentralamazonischen Überschwemmungswäldern. Mitt Dtsch Dendrol Ges 82:155–172Google Scholar
  157. Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsating system. Ecolog Stud 126:223–265. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  158. Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403CrossRefGoogle Scholar
  159. Worbes M, Klinge H, Revilla JD, Martius C (1992) On the dynamics, floristic subdivision and geographical distribution of várzea forests in Central Amazonia. J Vegetat Sci 3:553–564CrossRefGoogle Scholar
  160. Worbes M, Klosa D, Lewark S (1995) Rohdichtestruktur von Jahresringen tropischer Hölzer aus zentralamazonischen Überschwemmungswäldern. Holz Roh Werkst 53:63–67CrossRefGoogle Scholar
  161. Worbes M, Junk WJ (1999) How old are tropical trees? The persistence of a myth. IAWA J 20(3):255–260Google Scholar
  162. Worbes M, Piedade MTF, Schöngart J (2001) Holzwirtschaft im Mamirauá-Projekt zur nachhaltigen Entwicklung einer Region im Überschwemmungsbereich des Amazonas. Forstarchiv 72:188–200Google Scholar
  163. Worbes M, Fichtler E (2010) Wood anatomy and tree-ring structure and their importance for tropical dendrochronology. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  164. Yao J (1970) Influence of growth rate on specific gravity and other selected properties of Loblolly Pine. Wood Sci Technol 4:163–175CrossRefGoogle Scholar
  165. Ziburski A (1991) Dissemination, Keimung und Etablierung einiger Baumarten der Überschwemmungswälder Amazoniens. In: Rauh W (ed) Tropische und subtropische Pflanzenwelt. Akademie der Wissenschaften und der Literatur 77:1–96Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Biogeochemistry DepartmentMax Planck Institute for ChemistryMainzGermany
  2. 2.Department for Crop SciencesThe University of Göttingen, Institute for Agronomy in the TropicsGöttingenGermany

Personalised recommendations