Skip to main content

Biomass and Net Primary Production of Central Amazonian Floodplain Forests

  • Chapter
  • First Online:
Amazonian Floodplain Forests

Part of the book series: Ecological Studies ((ECOLSTUD,volume 210))

Abstract

In this chapter the existing knowledge on biomass in floodplain forests and the compounds that contribute to their net primary production (NPP) are presented and discussed in comparison with data from non-flooded upland (terra firme) forests. Fine litterfall in old-growth floodplain forests are similar to litterfall data from terra firme forests. The few existing estimates of root biomass in nutrient-rich white-water floodplain forests (várzea) indicate lower belowground biomasses in floodplain forests than in terra firme forests due to regular flooding which limits the development of deep roots. Along the chronosequence, C-storage in the aboveground coarse live wood biomass (AGWB) of várzea forests indicates a strong increase during the first 50–80 years of successional development, but afterwards no increase in AGWB can be observed. On the other hand C-sequestration in the AGWB of várzea forests declines more than threefold along the successional gradient. In comparison to terra firme forest, the várzea forests have lower C-stocks, but a higher C-sequestration in the AGWB. The estimated aboveground NPP in young successional stages of the central Amazonian várzea is among the highest NPP known for tropical forests, while the NPP of the late succession in the várzea is in the upper range of the NPP of old-growth forests in the terra firme. The available database for nutrient-poor floodplain forests (igapó) is insufficient to estimate their NPP. Climate-growth relationships of tree-ring chronologies of species from central Amazonian terra firme and floodplain forests indicate opposing signals during El Niño years. During these events large areas of terra firme forests release carbon to the atmosphere due to the warmer and drier climate conditions, while the weakened flood-pulse favours tree growth in the floodplain forests which might therefore sequester parts of the climate-induced carbon emissions of terra firme forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalto R, Maurice-Bourgoin L, Dunne T, Montgomery DR, Nittrouer CA, Guyot J-L (2003) Episodic sediment accumulation on Amazonian flood plains influenced by El Niño/Southern oscillation. Nature 425:493–497

    Article  PubMed  CAS  Google Scholar 

  • Adis J, Latif M (1996) Amazonian arthropods respond to El Niño. Biotropica 28:403–408

    Article  Google Scholar 

  • Adis J, Furch K, Irmler U (1979) Litter production of a central Amazonian blackwater inundation forest. Tropical Ecology 20:236–245

    Google Scholar 

  • Almeida SS, Amaral DD, Silva ASL (2004) Análise florística e estrutura de florestas de Várzea no estuário amazônica. Acta Amazonica 34(4):513–524

    Article  Google Scholar 

  • Alves DS, Soares JV, Amaral S, Mello EMK, Almeida SAS, Silva OF, Silveira AM (1997) Biomass of primary and secondary vegetation in Rondônia, Western Brazilian Amazon. Global Change Biol 3:451–461

    Article  Google Scholar 

  • Amarasekera KN, Lee RF, Williams ER, Eltahir EAB (1997) ENSO and the natural variability in the flow of tropical rivers. J Hydrol 200:24–39

    Article  Google Scholar 

  • Asner GP, Knapp DE, Broadbent EN, Oliveira PJC, Keller M, Silva JNM (2005) Selective logging in the Brazilian Amazon. Science 310:480–482

    Article  PubMed  CAS  Google Scholar 

  • Ayres JM (1993) As matas de várzea do Mamirauá. In: Sociedade civil Mamirauá (ed) Estudos de Mamirauá, vol.1. Sociedade civil Mamirauá, Mamirauá, pp 1–123

    Google Scholar 

  • Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Núñez Vargas P, Pitman NCA, Silva JNM, Vásquez Martínez R (2004a) Increasing biomass in Amazonia forest plots. Philos T Roy Soc B 359:353–365

    Article  Google Scholar 

  • Berish CW (1982) Root biomass and surface area in tree successional forests. Can J Forest Res 12:699–704

    Article  Google Scholar 

  • Bernoux M, Graça PMA, Cerri CC, Fearnside PM, Feigl BJ, Piccolo MC (2001) Carbon storage in biomass and soils. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, London, pp 165–184

    Google Scholar 

  • Bosshard HH (1984) Holzkunde, 2. Auflage, Bd. 2: Zur Bologie, Physik und Chemie des Holzes. Birkhäuser, Basel

    Google Scholar 

  • Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12

    Article  PubMed  Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper 134, Rome, Italy

    Google Scholar 

  • Brown S, Lugo AE (1992) Aboveground biomass estimates for tropical moist forests of Brazilian Amazon. Interciencia 17:8–18

    CAS  Google Scholar 

  • Brown S, Gillespie A, Lugo A (1989) Biomass estimation methods for tropical forests with application to forest inventory data. Forest Sci 35:881–902

    Google Scholar 

  • Budowski G (1961) Studies on forest succession in Costa Rica and Panama. Ph.D. thesis, New Haven, Yale University

    Google Scholar 

  • Cannell MGR (1984) Woody biomass of forest stands. Forest Ecol Manage 8:299–312

    Article  Google Scholar 

  • Cattanio JH, Anderson AB, Rombold JS, Nepstad DC (2004) Phenology, litterfall, growth, and root biomass in a tidal floodplain forest in Amazon estuary. Revista Brasileira de Botânica 4:703–712

    Google Scholar 

  • Chambers JQ, Higuchi N, Schimmel JP (1998) Ancient trees in Amazonia. Nature 391:135–136

    Article  CAS  Google Scholar 

  • Chambers JQ, Santos J, Ribeiro RJ, Higuchi N (2001) Tree damage, allometric relationships, and above-ground net primary production in Central Amazon forest. Forest Ecol Manag 152:73–84

    Article  Google Scholar 

  • Chave J, Riéra B, Dubois M-A (2001) Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. J Trop Ecol 17:79–96

    Article  Google Scholar 

  • Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004) Error propagation and scaling for tropical forest biomass estimates. Philos T Roy Soc B 359:409–420

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J-P, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  PubMed  CAS  Google Scholar 

  • Clark DA (2002) Are tropical forests an important carbon sink? Reanalysis of the long-term plot data. Ecol Appl 12:3–7

    Article  Google Scholar 

  • Clark DA (2004) Sources or sinks? The response of tropical forests to current and future climate and atmospheric compositions. Philos T Roy Soc B 359:477–491

    Article  CAS  Google Scholar 

  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA (2001) Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl 11:371–384

    Article  Google Scholar 

  • Clark DA, Clark DB (1994) Climate-induced annual variations in canopy tree growths in a Costa Rican tropical rain forests. J Ecol 82:865–872

    Article  Google Scholar 

  • Clark DA, Piper SC, Keeling CD, Clark DB (2003) Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. PNAS 100:5852–5857

    Article  PubMed  CAS  Google Scholar 

  • Clements FE (1936) Nature and structure of the climax. J Ecol 24:252–284

    Article  Google Scholar 

  • Cochrane MA (2003) Fire science for rainforests. Nature 421:913–919

    Article  PubMed  CAS  Google Scholar 

  • Coe MT, Costa MH, Botta A, Birkett C (2002) Long-term simulations of discharge and floods in the Amazon Basin. J Geophys Res-Atmos 107(D20):8044. doi:10.1029/2001JD000740

    Google Scholar 

  • Costa MH, Foley JA (2002) Combined effects of deforestation and doubled CO2 concentrations on the climate of Amazonia. J Climate 13:18–34

    Article  Google Scholar 

  • Costa MH, Botta A, Cardille J (2003) Effects of large-scale change in land cover on the discharge of the Tocantins River, Amazonia. J Hydrol 283:206–217

    Article  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  PubMed  CAS  Google Scholar 

  • Elias M, Potvin C (2003) Assessing intra- and inter-specific variation in trunk carbon concentration for 32 neotropical tree species. Can J Forest Res 33:1039–1045

    Article  Google Scholar 

  • Fearnside PM (1997) Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecol Manage 90:59–87

    Article  Google Scholar 

  • Fearnside PM, Guimarães WM (1996) Carbon uptake by secondary forests in Brazilian Amazonia. Forest Ecol Manag 80:35–46

    Article  Google Scholar 

  • Ferreira LV (1991) O efeito do periodo de inundação na zonação de comunidades, fenologia e regeneração em uma floresta de igapó na Amazonia Central. Master Thesis, INPA, Manaus, p 161

    Google Scholar 

  • Ferreira LV (1998) Intraspecific variation in phenology in relation to flooding duration in Eschweilera parviflora (Lecythidaceae) in central Amazonian floodplain forest. An Acad Bras Ci 70:1–4

    Google Scholar 

  • Fichtler E, Clark DA, Worbes M (2003) Age and long-term growth of trees in an old-growth tropical rain forest, based on analyses of tree rings and 14C. Biotropica 35:306–317

    Google Scholar 

  • Foley JA, Botta A, Coe MT, Costa MH (2002) El Niño-Southern oscillation and the climate, ecosystems and rivers of Amazonia. Global Biogeochem Cy 16(4):1132. doi:10.1029/2002GB001872

    Article  CAS  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  PubMed  CAS  Google Scholar 

  • Franken M, Irmler U, Klinge H (1979) Litterfall in inundation, riverine and terra firme forests of Central Amazonia. Trop Ecol 20(2):225–235

    Google Scholar 

  • Funck J (2004) Untersuchungen zur Wachstumsdynamik von Cariniana micrantha (Ducke) in der Nähe von Itacoatiara/Amazonien. M.Sc. Thesis, University Freiburg

    Google Scholar 

  • Furch K (1997) Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecolog Stud 126:47–68. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Grace J, Lloyd J, McIntyre J, Miranda AC, Meir P, Miranda HS, Nobre CA, Moncrieff J, Massheder J, Malhi Y, Wright I, Gash J (1995) Carbon dioxide uptake by an undisturbed tropical rain forest in Southwest Amazonia. Science 270:778–780

    Article  CAS  Google Scholar 

  • Grace J, Malhi Y (2002) Carbon dioxide goes with the flow. Nature 416:594–595

    Article  PubMed  CAS  Google Scholar 

  • Guariguata MR, Ostertag R (2001) Neotropical secondary succession: changes in structural and functional characteristics. Forest Ecol Manag 148:1142–1149

    Article  Google Scholar 

  • Guenther ACH, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay W, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emission. J Geophys Res 100(D5):8873–8892

    Google Scholar 

  • Harley PC, Monson RK, Lerdou MT (1999) Ecological and evolutionary aspects of isoprene emission from plants. Oecologia 118:109–123

    Article  Google Scholar 

  • Harris PP, Huntingford C, Cox PM (2008) Amazon Basin climate under global warming: the role of the sea surface temperature. Philos T Roy Soc B 363. doi:10.1098/rstb.2007.0037

    Google Scholar 

  • Haugaasen T, Peres CA (2005) Tree phenology in adjacent Amazonian flooded and unflooded forests. Biotropica 37(4):620–630

    Article  Google Scholar 

  • Horna V (2002) Carbon release from woody parts of trees from a seasonally flooded Amazon forest near Manaus, Brasil. Bayreuther Forum Ökologie 94:1–137

    Google Scholar 

  • Houghton RA, Skole DL, Nobre CA, Hackler JL, Lawrence KT, Chomentowski WH (2000) Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature 403:301–304

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis: summary for policymakers and technical summary. Working group I of the intergovernmental panel on climate change (IPCC), WMO & UNEP, Geneva, Switzerland

    Google Scholar 

  • Jordan CF (1983) Productivity of tropical rain forest ecosystems and the implication for their use as future wood and energy resources. In: Golley FB (ed) Tropical rain forest ecosystems. Ecosystems of the World 14 A. Elsevier, Amsterdam, pp 117–136

    Google Scholar 

  • Junk WJ (1985) The Amazon floodplain – a sink or a source of organic carbon? In: Degin ET, Kempe S, Herrera R (eds) Transport of carbon in the major World rivers. Part 3. Mitt Geol-Paläont Inst 58:267–283

    Google Scholar 

  • Junk WJ (1989) Flood tolerance and tree distribution in central Amazonian floodplains. In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests: botanical dynamics, speciation and diversity. Academic Press, New York, pp 47–64

    Google Scholar 

  • Junk WJ (1993) Wetlands of tropical South America. In: Whigham D, Hejny S, Dykyjova D (eds) Wetlands of the world. Junk Publications, Dordrecht, pp 679–739

    Google Scholar 

  • Keller M, Palace M, Hurtt G (2001) Biomass estimation in the Tapajos National Forest, Brazil – examination of sampling and allometric uncertainties. Forest Ecol Manag 154:371–382

    Article  Google Scholar 

  • Kesselmeier J, Ciccioli P, Kuhn U, Stefani P, Biesenthal T, Rottenberger S, Wolf A, Vitullo M, Valentini R, Nobre AD, Kabat P, Andreae MO (2002) Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget. Global Biogeochem Cy 16(4):1126. doi:10.1029/2001GB001813

    Article  CAS  Google Scholar 

  • Ketterings QM, Coe R, Van Noordwijk M, Ambagau Y, Palm CA (2001) Reducing uncertainty in the use of allometric biomass equations for predicting above-ground biomass in mixed secondary forests. Forest Ecol Manag 146:199–209

    Article  Google Scholar 

  • Klinge H (1973) Root mass estimation in lowland tropical rain forests of Central Amazon, Brazil. I. Fine root masses of a pale yellow latosol and a giant humus podzol. Trop Ecol 14(1):29–38

    Google Scholar 

  • Klinge H (1978a) Litter production in tropical ecosystems. Malayan Nat J 30(2):415–422

    Google Scholar 

  • Klinge H, Rodrigues WA (1968) Litter production in an area of Amazonian terra firme forest. Part I. Litter-fall, organic carbon and total nitrogen contents of litter. Amazoniana I(4):287–302

    Google Scholar 

  • Klinge H, Rodrigues WA, Bruenig E, Fittkau EJ (1975) Biomass and structure in a Central Amazonian forest. In: Golley FB, Medina E (eds) Trends in terrestrial and aquatic research. Springer, New York, pp 115–122

    Google Scholar 

  • Klinge H, Herrera R (1983) Phytomass structure of natural plant communities on spodosols in southern Venezuela: the tall Amazon Caatinga forest. Vegetatio 53:65–84

    Article  Google Scholar 

  • Klinge H, Adis J, Worbes M (1996) The vegetation of a seasonal várzea forest in the lower Solimões River, Amazon region of Brazil. Acta Amazonica 25(3–4):201–220

    Google Scholar 

  • Komiyama A, Ogino K, Aksonkoae S, Sabhasri S (1987) Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. J Trop Ecol 3:97–108

    Article  Google Scholar 

  • Laurance WF, Fearnside PM, Laurance SG, Delamonica P, Lovejoy TE, Rankin-de-Merona JM, Chambers JQ, Gascon C (1999) Relationship between soils and Amazon forest biomass: a landscape-scale study. Forest Ecol Manag 118:127–138

    Article  Google Scholar 

  • Laurance WF, Cochrane MA, Bergen S, Fearnside PM, Delamonica P, Barber C, D’Angelo S, Fernandes T (2001) Environment – the future of the Brazilian Amazon. Science 291:438–439

    Article  PubMed  CAS  Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG, Condit R, D’Angelo S, Andrade A (2004) Inferred longevity of Amazonian rainforest trees based on a long-term demographic study. Forest Ecol Manag 190:131–143

    Article  Google Scholar 

  • Loehle C (1988) Tree life history strategies: the role of defenses. Can J Forest Res 18:209–222

    Article  Google Scholar 

  • Lugo AE (1992) Comparison of tropical tree plantations with secondary forests of similar age. Ecol Monogr 62(1):1–41

    Article  Google Scholar 

  • Luizão FJ (1989) Litter production and mineral element input to the forest floor in a central Amazonian forest. GeoJournal 19:407–417

    Article  Google Scholar 

  • Malhi Y, Nobre AD, Grace J, Kruijt B, Pereira MGP, Culf A, Scott S (1998) Carbon dioxide transfer over a central Amazonian rain forest. J Geophys Res 103(D24):31593–31612

    Google Scholar 

  • Malhi Y, Baker TR, Phillips OL, Almeida S, Alvarez E, Arroyo L, Chave J, Czimczik CI, Di Fiore A, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis LL, Montoya LMM, Monteagudo A, Neill DA, Núñez Vargas P, Patiño S, Pitman NCA, Quesada CA, Salomão R, Silva JNM, Lezama AT, Martínez RV, Terborgh J, Vinceti B, Lloyd J (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biol 10:563–591

    Article  Google Scholar 

  • Malhi Y, Wood D, Baker TR, Wright J, Phillips OL, Cochrane T, Meir P, Chave J, Almeida S, Arroyo L, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Núñez Vargas P, Pitman NCA, Quesad CA, Salomão R, Silva JNM, Lezama AT, Terborgh J, Martínez RV, Vinceti B (2006) The regional variation o aboveground live biomass in old-growth Amazonian forests. Global Change Biol 12:1107–1138

    Article  Google Scholar 

  • Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deorestation, and fate of the Amazon. Science 319:169–172

    Article  PubMed  CAS  Google Scholar 

  • Marengo JA (1992) Interannual variability of surface climate in the Amazon basin. J Climatol 12:853–863

    Article  Google Scholar 

  • Marengo JA, Tomasella J, Uvo CR (1998) Trends in streamflow and rainfall in tropical South America: Amazonia, eastern Brazil and north-western Peru. J Geophys Res 103(D2):1775–1783

    Google Scholar 

  • Marengo JA, Nobre CA, Tomasella J, Cardoso MF, Oyama MD (2008) Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philos T Roy Soc B 363:1773–1778

    Article  CAS  Google Scholar 

  • Martius C (1992) Density, humidity, and nitrogen content of dominant wood species of floodplain forests (várzea) in Amazonia. Holz Roh Werkst 50:300–303

    Article  CAS  Google Scholar 

  • Medina E, Klinge H (1983) Productivity of tropical forests and tropical woodlands. Encyclopedia Plant Physiol 12D:281–303. Springer, Berlin, Heidelberg

    Google Scholar 

  • Meyer U (1991) Feinwurzelsysteme und Mykorrhizatypen als Anpassungsmechanismen in zentralamazonischen Überschwemmungswäldern- Igapó and Várzea. Ph.D. thesis, University of Hohenheim, Germany

    Google Scholar 

  • Meyer U, Junk WJ, Linck C (2010) Fine root systems and mycorrhizal associations in two central Amazonian floodplain forests – igapó and várzea. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Moreira KS (2006) Avaliação da sazonalidade sobre a dinâmica de liteira em uma floresta de transição no Parque Estadual do Cantão, entorno da Ilha do Bananal, estado do Tocantins. Universidade Federal do Tocantins

    Google Scholar 

  • Nebel G, Dragsted J, Salazar Vega A (2001a) Litter fall, biomass and net primary production in flood plain forests in the Peruvian Amazon. Forest Ecol Manag 150:93–102

    Article  Google Scholar 

  • Nepstad DC, Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, Silva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669

    Article  CAS  Google Scholar 

  • Nepstad DC, Veríssimo A, Alencar A, Nobre CA, Lima E, Lefebvre P, Schlesinger P, Potter C, Moutinho P, Mendoza E, Cochrane M, Brooks V (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505–508

    Article  CAS  Google Scholar 

  • Nepstad DC, Stickler CM, Soares-Filho BS, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos T Roy Soc B 363:1737–1746

    Article  Google Scholar 

  • Ometto JPHB, Nobre AD, Rocha HR, Artaxo P, Martinelli LA (2005) Amazônia and the modern carbon cycle: lessons learned. Oecologia 143:483–500

    Article  PubMed  Google Scholar 

  • Overman JPM, Witte HJL, Saldarriaga JG (1994) Evaluation of regression models for above-ground biomass determination in Amazon rain forest. J Trop Ecol 10:207–218

    Article  Google Scholar 

  • Panshin AJ, De Zeeuw C (1980) Textbook of wood technology, 4th edn. MacGraw-Hill, New York

    Google Scholar 

  • Parolin P (2002a) Life history and environment of Cecropia latiloba in Amazonian floodplains. Rev Biol Trop 50:531–545

    PubMed  Google Scholar 

  • Parolin P (2002b) Radial gradients in wood specific gravity in trees of central Amazonian floodplains. IAWA J 23(4):449–457

    Google Scholar 

  • Parolin P, Ferreira LV (1998) Are there differences in specific wood gravities between trees in várzea and igapó (Central Amazonia)? Ecotropica 4:25–32

    Google Scholar 

  • Parolin P, Ferreira LV, Junk WJ (1998) Central Amazonia floodplains: effect of two water types on the wood density of trees. Verh Internat Verein Limnol 26:1106–1112

    Google Scholar 

  • Parolin P, Worbes M (2000) Wood density of trees in black water floodplains of Rio Jaú National Park, Amazonia. Acta Amazonica 30(3):441–448

    Google Scholar 

  • Parolin P, Adis J, Rodrigues WA, Amaral I, Piedade MTF (2004a) Floristic study of an igapó floodplain forest in Central Amazonia, Brazil (Tarumã-Mirim, Rio Negro). Amazoniana 18(1/2):29–47

    Google Scholar 

  • Parolin P, Lucas C, Piedade MTF, Wittmann F (2010) Drought responses of extremely flood tolerant trees of Amazonian floodplains. Annal Bot 105(1):129–139

    Google Scholar 

  • Peacock J, Baker TR, Lewis SL, Lopez-Gonzalez G, Phillips OL (2007) The RAINFOR database: monitoring forest biomass and dynamics. J Veg Sci 18:535–542

    Article  Google Scholar 

  • Peixoto JMA (2007) Monitoramento da dinâmica da geomorfologia fluvial da Reserva de Desenvolvimento Sustentável Mamirauá, por meio de técnicas de sensoriamento remoto. M.Sc. thesis INPA/UFAM, Manaus, Brazil

    Google Scholar 

  • Phillips OL, Malhi Y, Higuchi N, Laurance WF, Núñez Vargas P, Vásquez Martinez R, Laurance SG, Ferreira LV, Stern M, Brown S, Grace J (1998) Changes in the carbon balance of tropical forests: evidence of long-term plots. Science 282:439–442

    Article  PubMed  CAS  Google Scholar 

  • Phillips OL, Lewis SL, Baker TR, Chao K-J, Higuchi N (2008) The changing Amazon forest. Philos T Roy Soc B 363:1819–1827

    Article  Google Scholar 

  • Piedade MTF, Worbes M, Junk WJ (2001) Geo-ecological controls on elemental fluxes in communities of higher plants in Amazonian floodplains. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, New York, p 209–234

    Google Scholar 

  • Piedade MTF, Ferreira CS, Oliveira Wittmann A de, Buckeride M, Parolin P (2010) Biochemistry of Amazonian floodplain trees. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Prance GT (1979) Notes on the vegetation of Amazonia. 3. The terminology of Amazonian forest types subject to inundation. Brittonia 31:26–38

    Article  Google Scholar 

  • Prentice IC, Lloyd J (1998) C-quest in the Amazon Basin. Nature 396:619–620

    Article  CAS  Google Scholar 

  • Pretzsch H (2001) Modellierung des Waldwachstums. Parey Buchverlag, Berlin

    Google Scholar 

  • Queiroz HL, Peralta N (2010) Protected areas in Amazonian várzea and their role in its conservation: the case of Mamirauá Sustainable Development Reserve (MSDR). In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Richey JE, Nobre CA, Deser C (1989) Amazon river discharge and climate variability: 1903–1985. Science 246:101–103

    Article  PubMed  CAS  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620

    Article  PubMed  CAS  Google Scholar 

  • Rottenberger S (2003) Exchange of oxygenated volatile organic compounds between Amazonian and European vegetation and atmosphere. Ph.D. thesis, University of Mainz

    Google Scholar 

  • Roy J, Saugier B, Mooney HA (2001) Terrestrial global poroductivity. Academic Press, San Diego, California

    Google Scholar 

  • Saatchi SS, Houghton RA, Alvalá RCS, Soares JV, Yu Y (2007) Distribution of aboveground live biomass in the Amazon basin. Global Change Biol 13:813–837

    Article  Google Scholar 

  • Saldarriaga JG (1987) Recovery following shifting cultivation. A century of succession in the upper Rio Negro. In: Jordan CF (ed) Amazonian rain forests: ecosystem disturbance and recovery. Springer, New York, pp 24–33

    Chapter  Google Scholar 

  • Saldarriaga JG, West DC, Tharp ML, Uhl C (1988) Long-term chronosequence of forest succession in the upper Rio Negro of Columbia and Venezuela. J Ecol 76:938–958

    Article  Google Scholar 

  • Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, Rocha HR, Camargo PB, Crill P, Daube BC, Freitas HC, Hutyra L, Keller M, Kirchoff V, Menton M, Munger JW, Pyle EH, Rice AH, Silva H (2003) Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557

    Article  PubMed  CAS  Google Scholar 

  • Salo J, Kalliola R, Häkkinen L, Mäkinen Y, Niemelä P, Puhakka M, Coley PD (1986) River dynamics and the diversity of Amazon lowland forest. Nature 322:254–258

    Article  Google Scholar 

  • Sanford RL (1989) Root system of three adjacent, old growth Amazon forests and associated transition zones. J Trop For Sci 1:268–279

    Google Scholar 

  • Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B III, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172

    Article  PubMed  CAS  Google Scholar 

  • Schlüter UB, Furch B (1992) Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz des Baumes Macrolobium acaciaefolium, charakteristisch für die Weißund Schwarzwasser-Überschwemmungswälder bei Manaus, Amazonas. Amazoniana 12:51–69

    Google Scholar 

  • Schöngart J (2008) Growth-Oriented Logging (GOL): a new concept towards sustainable forest management in Central Amazonian várzea floodplains. Forest Ecol Manag 256:46–58

    Article  Google Scholar 

  • Schöngart J, Junk WJ (2007) Forecasting the flood-pulse in Central Amazonia by ENSO-indices. J Hydrol 335:124–132

    Article  Google Scholar 

  • Schöngart J, Piedade MTF, Ludwigshausen S, Horna V, Worbes M (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597

    Article  Google Scholar 

  • Schöngart J, Junk WJ, Piedade MTF, Ayres JM, Hüttermann A, Worbes M (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño-Southern oscillation effect. Global Change Biol 10:683–692

    Article  Google Scholar 

  • Schöngart J, Piedade MTF, Wittmann F, Junk WJ, Worbes M (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:654–661

    Article  Google Scholar 

  • Schöngart J, Wittmann F, Worbes M, Piedade MTF, Krambeck H-J, Junk WJ (2007) Management criteria for Ficus insipida Willd. (Moraceae) in Amazonian white-water floodplain forests defined by tree-ring analysis. Ann For Sci 64:657–664

    Article  Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment. Dendroecology. Birmensdorf, Swiss Federal Institute for Forest, Snow and Landscape Research, WSL/FNP. Berne, Stuttgart, Vienna

    Google Scholar 

  • Silva MFF (1982) Nota sobre decomposição de materia orgânica em floresta de terra firme, várzea e igapó. M.Sc. thesis, INPA/UFAM, Manaus, Brazil

    Google Scholar 

  • Silva MFF (1984) Produção de serrapilheira e seu conteúdo minerológico em mata de terra firme, Tucurui (PA). Boletim do Museu Emilio Goeldi (Série Botânica) 1:111–152

    Google Scholar 

  • Sioli H (1954a) Beiträge zur regionalen Limnologie des Amazonasgebietes. Archiv für Hydrobiologie 45:267–283

    Google Scholar 

  • Soares-Filho BS, Nepstad DC, Curran LM, Cerqueira GC, Garcia RA, Azevedo Ramos C, Voll E, McDonald A, Lefebvre P, Schlesinger P (2006) Modelling conservation in the Amazon basin. Nature 440:520–523

    Article  PubMed  CAS  Google Scholar 

  • Sombroek W (2001) Spatial and temporal patterns of Amazon rainfall. Ambio 30:388–396

    PubMed  CAS  Google Scholar 

  • Stark N, Spratt M (1977) Root biomass and nutrient storage in rain forest Oxisols near San Carlos de Rio Negro. Trop Ecol 18:1–9

    CAS  Google Scholar 

  • Swaine MD, Whitmore TC (1988) On the definition of ecological species groups in tropical rain forests. Vegetatio 75:81–86

    Article  Google Scholar 

  • Terborgh J, Petren K (1991) Development of habitat structure through succession in an Amazonian floodplain forest. In: Bell SS (ed) Habitat Structure. Chapman and Hall, London, pp 28–46

    Chapter  Google Scholar 

  • Tian H, Melillo JM, Kicklighter DW, McGuire AD, Helfrich JVK, Moore B III, Vörösmarty CJ (1998) Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396:664–667

    Article  CAS  Google Scholar 

  • Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–697

    Article  CAS  Google Scholar 

  • Vargas R, Allen MF, Allen EB (2008) Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical. Global Change Biol 14:109–124

    Google Scholar 

  • Viera S, Trumbore S, Camargo PB, Selhorst D, Chambers JQ, Higuchi N, Martinelli LA (2005) Slow growth rate of Amazonian trees: consequences for carbon cycling. PNAS 102:18502–18507

    Article  CAS  Google Scholar 

  • Whetton P, Rutherfurd I (1994) Historical ENSO teleconnection in the eastern hemisphere. Climat Change 28:221–253

    Article  Google Scholar 

  • White A, Cannell MGR, Friend AD (1999) Climate change impacts on ecosystems in the terrestrial carbon sink: new assessment. Global Environ Chang 9:S21–S30

    Article  Google Scholar 

  • Whittaker RH (1953) A consideration of climax theory: the climax as a population and pattern. Ecol Monogr 23:41–78

    Article  Google Scholar 

  • Wiemann MC, Williamson GB (1989) Wood specific gravity gradients in tropical dry and montane forest trees. Am J Bot 76:924–928

    Article  Google Scholar 

  • Williams E, Antonia AD, Antonia VD, Almeida JD, Suarez F, Liebmann B, Malhado ACM (2005) The drought of the century in the Amazon basin: an analysis of the regional variation of rainfall in South America in 1926. Acta Amazonica 35:231–238

    Article  Google Scholar 

  • Wittmann F, Anhuf D, Junk WJ (2002a) Detection of different forest types in Central Amazonian Várzea by remote sensing techniques – preliminary results. In: Lieberei R, Bianchi H-K, Boehm V, Reisdorff C (eds) Neotropical ecosystems. Proceedings of the German-Brazilian Workshop, Hamburg 2000, GKSS-Geesthacht, Germany, pp 607–661

    Google Scholar 

  • Wittmann F, Anhuf D, Junk WJ (2002b) Tree species distribution and community structure of central Amazonian várzea forests by remote-sensing techniques. J Trop Ecol 18: 805–820

    Article  Google Scholar 

  • Wittmann F, Junk WJ (2003) Sapling communities in Amazonian white-water forests. J Biogeogr 30:1533–1544

    Article  Google Scholar 

  • Wittmann F, Schöngart J, Montero JC, Motzer M, Junk WJ, Piedade MTF, Queiroz HL, Worbes M (2006) Tree species composition and diversity gradients in white-water forests across the Amazon Basin. J Biogeogr 33:1334–1347

    Article  Google Scholar 

  • Wittmann F, Schöngart J, Junk WJ (2010) Phytogeography, species diversity, community structure and dynamics of central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Worbes M (1989) Growth rings, increment and age of tree in inundation forest, savannas and a mountain forest in the Neotropics. IAWA Bull 10(2):109–122

    Google Scholar 

  • Worbes M (1994) Grundlagen und Anwendungen der Jahresringforschung in den Tropen. Universität of Hamburg, Habilitationsschrift

    Google Scholar 

  • Worbes M (1996) Rhythmisches Wachstum und anatomisch-morphologische Anpassungen an Lebensstrategien von Bäumen in zentralamazonischen Überschwemmungswäldern. Mitt Dtsch Dendrol Ges 82:155–172

    Google Scholar 

  • Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsating system. Ecolog Stud 126:223–265. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403

    Article  Google Scholar 

  • Worbes M, Klinge H, Revilla JD, Martius C (1992) On the dynamics, floristic subdivision and geographical distribution of várzea forests in Central Amazonia. J Vegetat Sci 3:553–564

    Article  Google Scholar 

  • Worbes M, Klosa D, Lewark S (1995) Rohdichtestruktur von Jahresringen tropischer Hölzer aus zentralamazonischen Überschwemmungswäldern. Holz Roh Werkst 53:63–67

    Article  Google Scholar 

  • Worbes M, Junk WJ (1999) How old are tropical trees? The persistence of a myth. IAWA J 20(3):255–260

    Google Scholar 

  • Worbes M, Piedade MTF, Schöngart J (2001) Holzwirtschaft im Mamirauá-Projekt zur nachhaltigen Entwicklung einer Region im Überschwemmungsbereich des Amazonas. Forstarchiv 72:188–200

    Google Scholar 

  • Worbes M, Fichtler E (2010) Wood anatomy and tree-ring structure and their importance for tropical dendrochronology. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Yao J (1970) Influence of growth rate on specific gravity and other selected properties of Loblolly Pine. Wood Sci Technol 4:163–175

    Article  Google Scholar 

  • Ziburski A (1991) Dissemination, Keimung und Etablierung einiger Baumarten der Überschwemmungswälder Amazoniens. In: Rauh W (ed) Tropische und subtropische Pflanzenwelt. Akademie der Wissenschaften und der Literatur 77:1–96

    Google Scholar 

Download references

Acknowledgment

This study was supported by the SHIFT Program ENV-29/2 (CNPq-BMBF) and the INPA/Max-Planck Project. We acknowledge Celso Rabelo Costa and Jackson de Castro for technical assistance during the field work and thank Eberhard F. Bruenig for his careful review and valuable comments on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Schöngart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schöngart, J., Wittmann, F. (2010). Biomass and Net Primary Production of Central Amazonian Floodplain Forests. In: Junk, W., Piedade, M., Wittmann, F., Schöngart, J., Parolin, P. (eds) Amazonian Floodplain Forests. Ecological Studies, vol 210. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8725-6_18

Download citation

Publish with us

Policies and ethics