Advertisement

Wood Anatomy and Tree-Ring Structure and Their Importance for Tropical Dendrochronology

  • Martin WorbesEmail author
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 210)

Abstract

In Amazonian floodplain forests, the flood pulse results in an ­alternating aquatic and terrestrial phase per year. Consequentially, trees react with cambial ­dormancy, resulting in differing wood anatomical structures that appear as rings in the cross-section of the trees stem. Annual tree-ring patterns represent a reliable basis that can be used in various ways to gain information on historical growth rates, tree age, and past environmental conditions. In the following chapter, the anatomical background of the visibility of tree rings will be explained and an overview over the wood anatomy and tree-ring structures of the stem of many tree species in the igapó and várzea will be given. Most species in the várzea (77%) show well defined rings around the entire cross-section; most species in the igapó (60%) show distinct rings but they are not visible around the entire cross-section or are generally ill-defined; species with poor and barely visible boundaries originate from the igapó. Despite the large variability of tree rings from tropical regions, their annual nature could be proven for many tree species. This opens the possibility to widely apply tree-ring analytical studies in the tropics.

Keywords

Ring structure Tree ring analysis Wood anatomy 

Notes

Acknowledgments

E. Fichtler was sponserd by the Scholarship Programme of the German Environmental Foundation. We thank Dieter Eckstein and Jochen Schöngart for their careful review and valuable comments on this chapter.

References

  1. Baas P (1990) Ecological trends in the wood anatomy and their biological significance. In: Schweingruber FH (ed) Anatomy of European woods. Eidg. Forschungsanstalt WSL, Paul Haupt, Bern, Stuttgart, pp 739–762Google Scholar
  2. Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12PubMedCrossRefGoogle Scholar
  3. Carlquist S (1988) Comparative wood anatomy. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  4. Chambers JQ, Higuchi N, Schimmel JP (1998) Ancient trees in Amazonia. Nature 391:135–136CrossRefGoogle Scholar
  5. Clark DA, Clark DB (1999) Assessing the growth of tropical rain forest trees: issues for forest modelling and management. Ecol Appl 9(3):981–997CrossRefGoogle Scholar
  6. Condit R, Hubbell SP, Foster RB (1995) Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol Monogr 65:418–439CrossRefGoogle Scholar
  7. Coster C (1927) Zur Anatomie und Physiologie der Zuwachszonen und Jahresringbildung in den Tropen. Annales du Jardin botanique de Buitenzorg 37:49–160Google Scholar
  8. Coster C (1928) Zur Anatomie und Physiologie der Zuwachszonen und Jahresringbildung in den Tropen. Annales du Jardin botanique de Buitenzorg 38:1–114Google Scholar
  9. Dünisch O, Bauch J, Sack M, Müller M (1999) Growth dynamics in wood formation of plantation-grown Swietenia macrophylla King and Carapa guianensis Aubl. Mitt Bundesforsch 193:79–96Google Scholar
  10. Dünisch O, Puls J (2003) Changes in content of reserve materials in an evergreen, a semi-deciduous, and a deciduous Meliaceae species from the Amazon. J Appl Bot 77:10–16Google Scholar
  11. Fichtler E, Clark DA, Worbes M (2003) Age and long-term growth of trees in an old-growth tropical rain forest, based on analyses of tree rings and 14C. Biotropica 35:306–317Google Scholar
  12. Fichtler E, Trouet V, Beeckman H, Coppin P, Worbes M (2004) Climatic signals in tree rings of Burkea africana and Pterocarpus angolensis from semiarid forests in Namibia. Trees-Struct Funct 18:442–451CrossRefGoogle Scholar
  13. Fink S (1982) Histochemical investigations on starch-distribution and activity of acid-phosphatases in the xylem of some tropical tree species. Holzforschung 36:295–302CrossRefGoogle Scholar
  14. Gessner F (1968) Zur ökologischen Problematik der Überschwemmungswälder des Amazonas. Int Rev Ges Hydrobiol 53(4):525–547CrossRefGoogle Scholar
  15. Laurance WF, Nascimento HEM, Laurance SG, Condit R, D'Angelo S, Andrade A (2004) Inferred longevity of Amazonian rainforest trees based on a long-term demographic study. Forest Ecol Manag 190:131–143CrossRefGoogle Scholar
  16. Lieberman D, Lieberman M, Hartshorn G, Peralta R (1985) Growth rates and age-size relationships of tropical wet forest trees in Costa Rica. J Trop Ecol 1:97–109CrossRefGoogle Scholar
  17. Loehle C (1988) Tree life history strategies: the role of defenses. Can J Forest Res 18:209–222CrossRefGoogle Scholar
  18. Mariaux A (1967) Les cernes dans les bois tropicaux africains, nature e périodicité. Bois et Fôrets des Tropiques 113:3–14Google Scholar
  19. Schöngart J (this volume) Growth-Oriented Logging (GOL): a new concept for an ecologically sustainable forest management in central Amazonian floodplains. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  20. Schöngart J, Junk WJ (2007) Forecasting the flood-pulse in Central Amazonia by ENSO-indices. J Hydrol 335:124–132CrossRefGoogle Scholar
  21. Schöngart J, Junk WJ, Piedade MTF, Ayres JM, Hüttermann A, Worbes M (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño-Southern oscillation effect. Global Change Biol 10:683–692CrossRefGoogle Scholar
  22. Schöngart J, Piedade MTF, Ludwigshausen S, Horna V, Worbes M (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597CrossRefGoogle Scholar
  23. Schöngart J, Rocha R de M, Queiroz HL (this volume a) Timber extraction in the Central Amazonian floodplains. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  24. Schweingruber FH (2001) Dendroökologische Holzanatomie. Anatomische Grundlagen der Dendrochronologie. Eidg. Forschungsanstalt WSL, Paul Haupt, BernGoogle Scholar
  25. Therrell MD, Stahle DW, Diaz JV, Oviedo EH, Cleaveland MK (2006) Tree-ring reconstructed maize yield in central Mexico: 1474–2001. Climat Change 74:493–504CrossRefGoogle Scholar
  26. Viera S, Trumbore S, Camargo PB, Selhorst D, Chambers JQ, Higuchi N, Martinelli LA (2005) Slow growth rate of Amazonian trees: consequences for carbon cycling. PNAS 102:18502–18507CrossRefGoogle Scholar
  27. Worbes M (1984) Periodische Zuwachszonen an Bäumen zentralamazonischer Überschwemmungswälder. Naturwissenschaften 71:157–158CrossRefGoogle Scholar
  28. Worbes M (1985) Structural and other adaptations to longterm flooding by trees in Central Amazonia. Amazoniana 9:459–484Google Scholar
  29. Worbes M (1995) How to measure growth dynamics in tropical trees – a review. IAWA J 16:337–351Google Scholar
  30. Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsating system. Ecolog Stud 126:223–265. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  31. Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403CrossRefGoogle Scholar
  32. Worbes M (2002) One hundred years of tree ring research in the tropics – a brief history and an outlook to future challenges. Dendrochronologia 20(1–2):217–231Google Scholar
  33. Worbes M, Junk WJ (1989) Dating tropical trees by Means of 14C from Bomb tests. Ecology 70(2):503–507CrossRefGoogle Scholar
  34. Worbes M, Junk WJ (1999) How old are tropical trees? The persistence of a myth. IAWA J 20(3):255–260Google Scholar
  35. Worbes M, Klinge H, Revilla JD, Martius C (1992) On the dynamics, floristic subdivision and geographical distribution of várzea forests in Central Amazonia. J Vegetat Sci 3:553–564CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department for Crop SciencesThe Institute for Agronomy in the Tropics, The University of GöttingenGöttingenGermany

Personalised recommendations