Genetic Variability, Divergence and Speciation in Trees of Periodically Flooded Forests of the Amazon: A Case Study of Himatanthus sucuuba (Spruce) Woodson

  • Cristiane S. FerreiraEmail author
  • Antonio V. O. Figueira
  • Rogério Gribel
  • Florian Wittmann
  • Maria T. F. Piedade
Part of the Ecological Studies book series (ECOLSTUD, volume 210)


Contrary to the theory that geographic isolation is the main trigger for speciation, recent studies emphasize the continuous adaptation to different habitats as the driving force initiating diversification. In this way, adaptive divergence in response to contrasting selective pressures of populations of the same species in geographically or ecologically continuous environments may occur if long-lasting barriers are induced by biotic or abiotic events. Plants of the Amazon floodplains withstand annual periods of flooding which can last seven months. To verify if the regularity of the “flood pulse” of the Amazon River can induce speciation, we investigated populations of Himatanthus sucuuba (Apocynaceae) colonizing whitewater floodplains (várzea) and non-flooded uplands (terra-firme) in the region. In independent experiments, we simulated flooding conditions, to evaluate the germination and growth of seedlings from both environments. The two populations showed significant differences for most parameters evaluated. Thus, flooding is apparently a feature strong enough to promote phenotypic differentiation among várzea and terra firme populations. Indeed, molecular analysis showed genetic difference between populations, revealing that different ecological pressures may promote adaptive changes in Amazonian plants to insure establishment in different environments.


Amazon Basin Flood Pulse Terra Firme Terra Firme Forest Terrestrial Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Benz RB, Rhode MJ, Cruzan BM (2007) Aerenchyma development and elevated alcohol dehydrogenase activity as alternative responses to hypoxic soils in the Piriqueta caroliniana complex. Am J Bot 94:542–550PubMedCrossRefGoogle Scholar
  2. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evolut 22:148–155CrossRefGoogle Scholar
  3. Buckeridge MS, Santos HP, Tiné MA, Aidar MPM (2004) Mobilização de reservas. In: Ferreira AG, Borguetti F (eds) Acúmulo de reservas. Germinação: do básico ao aplicado. Porto Alegre, Ed. Artmed, pp 163–185Google Scholar
  4. Buckley DP, O’malley DM, Apsit V, Prance GT, Bawa KS (1988) Genetics of Brazil nut (Bertholletia excelsa Humb. and Bonpl.): Lecythidaceae). I Genetic variation in natural populations. Theor Appl Genet 76:923–928CrossRefGoogle Scholar
  5. Crawford RMM (1978) Metabolic adaptations to anoxia. In: Hook DD, Crawford RMM (eds) Plant life in anaerobic environments. Ann Arbor Science, London, pp 119–136Google Scholar
  6. Crawford RMM (1992) Oxygen availability as an ecological limit to plant distribution. Adv in Ecol Res 23:93–185CrossRefGoogle Scholar
  7. Dick CW, Abdul-Salim K, Bermingham E (2003) Molecular systematics reveals cryptic Tertiary diversification of a widespread tropical rainforest tree. Am Nat 160(12):691–703CrossRefGoogle Scholar
  8. Dick CW, Bermingham E, Lemes ML, Gribel R (2007) Extreme long-distance dispersal of the lowland tropical rainforest tree Ceiba pentandra L. (Malvaceae) in Africa and the Neotropics. Molec Ecol 16:3039–3049CrossRefGoogle Scholar
  9. Dutech C, Maggia L, Joly HI (2000) Chloroplast diversity in Vouacapoua americana (Caesalpinaceae), a neotropical forest tree. Molec Ecol 9:1427–1432CrossRefGoogle Scholar
  10. Felsenstein J (1995) PHYLIP (Phylogeny Inference Package), Version 3.57c University of WashingtonGoogle Scholar
  11. Ferreira CS (2002) Germinação e adaptações metabólicas e morfo-anatômicas em plântulas de Himatanthus succuuba (Spruce) Wood., de ambientes de várzea e terra firme na Amazônia Central. Unpubl Master Thesis, Universidade do Amazonas (UA), Instituto Nacional de Pesquisas da Amazônia (INPA), p 95Google Scholar
  12. Ferreira CS (2006) Aspectos morfo-anatômicos, bioquímicos e genéticos de de Himatanthus sucuuba, em ambiente de várzea e de terra firme da Bacia Amazônica. Ph.D. thesis, CAPES, INPA/UFAM, ManausGoogle Scholar
  13. Ferreira CS, Piedade MTF, Bonates LC (2006) Germinação de sementes e sobrevivência de plântulas de Himatanthus sucuuba (Spruce) Wood. em resposta ao alagamento, nas várzeas da Amazônia Central. Acta Amazonica 36:413–418Google Scholar
  14. Ferreira CS, Piedade MTF, Junk WJ, Parolin P (2007) Floodplain and upland populations of Amazonian Himatanthus sucuuba: effects of flooding on germination, seedling growth and mortality. Environ Experiment Bot 60(3):477–483CrossRefGoogle Scholar
  15. Fine PVA, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–665PubMedCrossRefGoogle Scholar
  16. Gascon C, Malcolm JR, Patton JL, da Silva MNF, Bogard JP, Lougheed SC, Peres CA, Neckel S, Boag PT (2000) Riverine barriers and the geographic distribution of Amazonian species. Proceedings of the National Academy of Sciences, USA, vol 97, pp 13672–13677Google Scholar
  17. Haffer J, Prance GT (2001) Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana 16:579–607Google Scholar
  18. Hall JPW, Harvey D (2002) The phylogeography of Amazonia revisited: new evidence from riodinid butterflies. Evolution 56(7):1489–1497PubMedGoogle Scholar
  19. Hamrick JL, Loveless MD (1989) The genetic structure of tropical tree populations: associations with reproductive biology. In: Bock JH, Linhart YB (eds) The evolutionary biology of plants. Westview Press, Boulder, CO, pp 129–146Google Scholar
  20. Harborne JB (1988) Introduction to ecological biochemistry, 3rd edn. London, Academic Press, p 356Google Scholar
  21. Junk WJ, Barley PB, Sparks RE (1989) The flood-pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127Google Scholar
  22. Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monograph 1:1–29Google Scholar
  23. Lemes MR, Gribel R, Proctor J, Grattapaglia D (2003) Population genetic structure of mahogany (Swietenia macrophylla King, Meliaceae) across the Brazilian Amazon, based on variation at microsatellite loci: implications for conservation. Molecul Ecol 12:2875–2883CrossRefGoogle Scholar
  24. Lobo PC, Joly CA (1998) Tolerance to hypoxia and anoxia in Neotropical tree species. Oecologia Brasiliensis 4:137–156CrossRefGoogle Scholar
  25. Loveless MD (1992) Isozyme variation in tropical trees: patterns of genetic organization. New Forests 5:1–28Google Scholar
  26. Novick RS, Dick CW, Lemes M, Navarro C, Caccone A, Bermingham E (2003) Genetic structure of Mesoamerican populations of big-leaf mahogany (Swietenia macrophylla) inferred by microsatellite analysis. Molecul Ecol 12:2885–2893CrossRefGoogle Scholar
  27. Parolin P (2001a) Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia 128:326–335CrossRefGoogle Scholar
  28. Parolin P (2003) Extreme sites and diversity – an example from Amazonian floodplain forests. Botanica 53:23–34Google Scholar
  29. Pigliucci M, Kolodynska A (2002) Phenotypic plasticity and integration in response to flooded conditions in natural accessions of Arabidopsis thaliana (L.) Heynh (Brassicaceae). Annal Bot 90:199–207CrossRefGoogle Scholar
  30. Pires JM (1984) The Amazonian forest. In: Sioli H (ed) The Amazon – limnology and landscape ecology of a mighty tropical river and its basin. Junk, Dordrecht, pp 581–602Google Scholar
  31. Plumel MM (1991) Le genre Himatanthus (Apocynaceae). Révision taxonomique. Bradea 5:118Google Scholar
  32. Potomati A, Buckeridge MS (2002) Effect of abscisic acid on the mobilisation of galactomannan and embryo development of Sesbania virgata (Cav) Pers. (Leguminosae – Faboideae). Revista Brasileira de Botânica 25(3):303–310Google Scholar
  33. Price TD, Qvarnstrom A, Irwin DE (2003) The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society of London, series B, vol 270, pp 1433–1440Google Scholar
  34. Rieseberg LH, Wendel J (2004) Plant speciation – rise of the poor cousins. New Phytol 161(1):3–8CrossRefGoogle Scholar
  35. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecul Biol Evolut 4:406–425Google Scholar
  36. Smith TB, Schneider CJ, Holder K (2001) Refugial isolation versus ecological gradients. Genetica 112–113:383–398PubMedCrossRefGoogle Scholar
  37. Souza MC (2006) Variações morfológicas, moleculares e fitoquímicas do complexo Geonoma maxima (Poit.) Kunth (Arecaceae) na Amazônia: elucidação de um problema taxonômico. Ph.D. thesis, CNPq, INPA/UFAM, ManausGoogle Scholar
  38. Swofford DL (1998) PAUP* – Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  39. Way H, Chapman S, McIntyre L, Casu R, Xue GP, Manners J, Shorter R (2005) Identification of differentially expressed genes in wheat undergoing gradual water deficit stress using a subtractive hybridisation approach. Plant Sci 168:661–670CrossRefGoogle Scholar
  40. Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19PubMedCrossRefGoogle Scholar
  41. Wittmann F, Anhuf D, Junk WJ (2002b) Tree species distribution and community structure of central Amazonian várzea forests by remote-sensing techniques. J Trop Ecol 18:805–820CrossRefGoogle Scholar
  42. Wittmann F, Schöngart J, Junk WJ (this volume) Phytogeography, species diversity, community structure and dynamics of central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  43. Zhang ZX, Zou XL, Tang WH, Zheng YL (2005) Revelation on early response and molecular mechanism of submergence tolerance in maize roots by microarray and suppression subtractive hybridization. Environ Experimen Bot 58(1/3):53–63Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Cristiane S. Ferreira
    • 1
    Email author
  • Antonio V. O. Figueira
    • 2
  • Rogério Gribel
    • 3
  • Florian Wittmann
    • 4
  • Maria T. F. Piedade
    • 5
  1. 1.Department of BotanyUniversity of BrasiliaBrasiliaBrazil
  2. 2.Centro de Energia Nuclear na Agricultura (CENA)Universidade de São Paulo(USP)PiracicabaBrazil
  3. 3.Coordination of BotanyNational Institute of Amazon Research (INPA)ManausBrazil
  4. 4.Atmospheric Chemistry DepartmentMax Planck InstituteMainzGermany
  5. 5.Coordination of Aquatic BiologyNational Institute of Amazon Research (INPA)ManausBrazil

Personalised recommendations