Seed Germination and Seedling Establishment of Amazonian Floodplain Trees

  • Astrid de Oliveira WittmannEmail author
  • Aline Lopes
  • Auristela Dos Santos Conserva
  • Florian Wittmann
  • Maria T. F. Piedade
Part of the Ecological Studies book series (ECOLSTUD, volume 210)


Many Amazonian floodplain trees fruit during the high-water period and thus benefit from long-distance dispersal by hydrographic corridors. Two different germination strategies can be observed: Species with buoyant seeds tend to germinate rapidly as soon seeds get in contact with river waters, while species with submerged seeds generally undergo longer dormancies and germinate when flood-waters recede. In Amazonian floodplains, tree seedlings get frequently fully submerged for various periods, inducing hypoxia, complete darkness, and elevated mechanical constraints brought up by water currents and sediment. However, observations from field inventories indicate that seedlings of several várzea tree species perform very well under submergence, whereas mortality rates increase during the terrestrial phases. Establishment strategies seems to change along the flooding gradient: Seedlings from highly flooded low-várzea tree species are well-adapted to tolerate the seasonal inundations, while seedlings from low and irregularly flooded high-várzea tree species are poorly-flood adapted thus reacting very sensitive to flood pulse variations.


Germination Rate Seedling Establishment Seedling Density Floodplain Forest Amazonian Floodplain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Assis RL (2008) Composição floristica e diversidade em clareiras de florestas sazonalmente alagáveis de várzea na Reserva de Desenvolvimento Sustentável Mamirauá, Amazônia Central. Master-Diss. Instituto Nacional de Pesquisas da Amazônia, ManausGoogle Scholar
  2. Ayres JM (1993) As matas de várzea do Mamirauá. In: Sociedade civil Mamirauá (ed) Estudos de Mamirauá, vol.1. Sociedade civil Mamirauá, Mamirauá, pp 1-123Google Scholar
  3. Barroso GM, Morim MP, Peixoto A, Ichaso CLF (1999) Frutos e Sementes: morfologia aplicada à sistemática de dicotiledôneas. Editora UFV, p 443Google Scholar
  4. Bazzaz FA (1991) Regeneration of tropical forests: physiological responses of pioneer and secondary species. In: Gomez-Pompa A, Whitmore TC, Hadley M (eds) Rain forest regeneration and management. The Parthenon Publishing Group, London, pp 91–118Google Scholar
  5. Bazzaz FA, Pickett STA (1980) Physiological ecology of tropical succession: a comparative review. Annu Rev Ecol System 11:287–310CrossRefGoogle Scholar
  6. Bewley JD, Black M (1982) Physiology and biochemistry of seed in relation to germination: viability, dormancy and environmental control. Springer, Berlin, p 375CrossRefGoogle Scholar
  7. Bongers F, Popma J, Del Castillo JM, Caraibas J (1988) Structure and floristic composition of the lowland rain forest of Los Tuxtlas, Mexico. Vegetatio 74:55–80CrossRefGoogle Scholar
  8. Bruenig EF (1983) Vegetation structure and growth. In: Golley FB (ed) Tropical rain forest ecosystems. Structure and function. Elsevier, Amsterdam, pp 49–75Google Scholar
  9. Bryant JA (1985) Fisiologia de semente. EPU, São Paulo, p 86Google Scholar
  10. Budowski G (1965) Distribution of tropical American rain forest species in the light of successional processes. Turrialba 15:40–42Google Scholar
  11. Castro ABC (2004) Germinação e Crescimento de Plântulas de Espécies arbóreas da Várzea baixa da Amazônia Central. Trabalho de Conclusão de Curso para obtenção do Grau de Bacharel em Engenharia Florestal. Instituto de tecnologia da Amazônia – UTAM. Manaus, AMGoogle Scholar
  12. Conserva AS (2007) Germinação de sementes, emergência e recrutamento de plântulas de dez espécies arbóreas das várzeas da Reserva de Desenvolvimento Sustentável Amanã e Mamirauá, Amazônia Central. Tese – INPA/UFAM, Manaus, p 132Google Scholar
  13. Denslow JS (1980) Gap partitioning among tropical rain forest trees. Biotropica 12:47–55CrossRefGoogle Scholar
  14. Fernandes-Corrêa AF, Furch B (1992) Investigations on the tolerance of several trees to submergence in blackwater (igapó) and whitewater (várzea) inundation forests near Manaus, Central Amazonia. Amazoniana 12:71–84Google Scholar
  15. Ferreira CS (2002) Germinação e adaptações metabólicas e morfo-anatômicas em plântulas de Himatanthus succuuba (Spruce) Wood., de ambientes de várzea e terra firme na Amazônia Central. Unpubl Master Thesis, Universidade do Amazonas (UA), Instituto Nacional de Pesquisas da Amazônia (INPA), p 95Google Scholar
  16. Ferreira LV (1997) Effects of the duration of flooding on species richness and floristic composition in three hectares in the Jaú National Park in floodplain forests in central Amazonia. Biodivers Conserv 6:1353–1363CrossRefGoogle Scholar
  17. Fosket DE (1994) Plant growth and development. A molecular approach. Academic Press. San Diego, CA, USA, p 580Google Scholar
  18. Frankland B, Bartley MR, Spence DHN (1987) Germination under the water. In: Crawford RMM (ed) Plant life in aquatic and amphibious habitats, vol 5, Special publication series of the British ecological society. Blackwell Scientific, Oxford, England, pp 167–178Google Scholar
  19. Gottsberger G (1978) Seed dispersal by fish in inundated regions of Humaitá, (Amazonas). Biotropica 10:170–83CrossRefGoogle Scholar
  20. Goulding M (1983) The role of fishes in seed dispersal and plant distribution in Amazonian floodplain ecosystems. Sonderbd Naturwiss Ver Hamburg 7:271–283Google Scholar
  21. Grubb PJ (1998) Seeds and fruits of tropical rainforest plants: interpretation of the range in seed size, degree of defence and flesh/seeds quotients. In: Newberry DM, Purvis A, Brown S (eds) Dynamics of tropical communities. Symposium of the British Ecological Society 37, pp 1–24Google Scholar
  22. Grubb PJ, Coomes DA (1997) Seed mass and nutrient content in nutrient-starved tropical rainforest in Venezuela. Seed Sci Res 7:269–280CrossRefGoogle Scholar
  23. Hook DD (1984) Adaptations to flooding with fresh water. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, Orlando, FL, pp 265–294Google Scholar
  24. Johnson WC, Burgress RL, Keammerer WR (1976) Forest overstay vegetation end environment on the Missouri river floodplain in North Dakota. Ecol Monogr 46:59–84CrossRefGoogle Scholar
  25. Junk WJ (1984) Ecology of the várzea, floodplain of Amazonian white water rivers. In: Sioli H (ed) The Amazon – limnology and landscape ecology of a mighty tropical river and its basin. Monographiae Biologicae. Junk Publications, Dordrecht, pp 216–243Google Scholar
  26. Junk WJ (1989) Flood tolerance and tree distribution in central Amazonian floodplains. In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests: botanical dynamics, speciation and diversity. Academic Press, New York, pp 47–64Google Scholar
  27. Junk WJ, Barley PB, Sparks RE (1989) The flood-pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127Google Scholar
  28. Junk WJ, Piedade MTF (1997) Plant life in the floodplain with special reference to herbaceous plants. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsating system. Ecolog Stud 126:147–186. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  29. Junk WJ, Piedade MTF (this volume) An introduction to SouthAmerican wetland forests: distribution, definitions and general characterization. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  30. Junk WJ, Piedade MTF, Parolin P, Wittmann F, Schöngart J (this volume b) Ecophysiology, biodiversity and sustainable management of central Amazonian floodplain forests: a synthesis. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  31. Junk WJ, Welcomme RL (1990) Floodplains In: Patten BC et al (eds) Wetlands and shallow continental water bodies, vol 1. SPB Academic Publishing, Netherlands, pp 491–524Google Scholar
  32. Kelly CK (1995) Seed size in tropical trees: a comparative study of factors affecting seed size in Peruvian angiosperms. Oecologia 102:377–388CrossRefGoogle Scholar
  33. Klinge H, Junk WJ, Revilla CJ (1990) Status and distribution of forested wetlands in tropical South America. Forest Ecol Manage 33/34:81–101. Elsevier, AmsterdamGoogle Scholar
  34. Koshikene D (2005) Estratégias germinativas de sete espécies florestais de diferentes estágios sucessionais da várzea na Amazônia Central. Unpublished Master Thesis, pp 74Google Scholar
  35. Kozlowski TT (2002) Physiological ecology of natural regeneration of harvested and disturbed forest stands: implications for forest management. For Ecol Manage 158:195–221CrossRefGoogle Scholar
  36. Kozlowski TT, Pallardy SG (1997) Growth control in woody plants. Academic Press, San Diego, p 410Google Scholar
  37. Krack S (2000) Untersuchungen zur Überflutungstoleranz von Bäumen (Jungpflanzen) der zentralamazonischen Weisswasser-Überschwemmungswälder (várzea) bei Manaus, Amazonas. Universität Würzburg, Master-DissGoogle Scholar
  38. Kubitzki K, Ziburski A (1994) Seed dispersal in floodplain forest of Amazonia. Biotropica 26(1):30–43CrossRefGoogle Scholar
  39. Li M, Lieberman M, Lieberman D (1996) Seedling demography in undisturbed tropical wet forest in Costa Rica. In: Swaine MD (ed) The ecology of tropical forest tree seedlings. MAB UNESCO Series Vol. 17. Parthenon, Paris, pp 285–314Google Scholar
  40. Lieberman D, Lieberman M, Hartshorn G, Peralta R (1985) Growth rates and age-size relationships of tropical wet forest trees in Costa Rica. J Trop Ecol 1:97–109CrossRefGoogle Scholar
  41. Lopez OR (2001) Seed flotation and postflooding germination in tropical terra firme and seasonally flooded forest species. Funct Ecol 15(6):763–771CrossRefGoogle Scholar
  42. Lucas CM (2008) Within flood season variation in fruit consumption and seed dispersal by two Characin fishes of the Amazon. Biotropica 40(5):581–589CrossRefGoogle Scholar
  43. Mack AL (1998) An advantage of large seed size: tolerating rather than succumbing to seed predators. Biotropica 30:604–608CrossRefGoogle Scholar
  44. Maia LA, Maia S, Parolin P (2005) Seedling morphology of tree species in central Amazonian várzea floodplain forests. Ecotropica 11:1–8Google Scholar
  45. Maia LA, Santos LM, Parolin P (2007) Seed germination of Bothriospora corymbosa (Rubiaceae) recuperated from the digestive tract of Triportheus angulatus (sardine) in Camaleão Lake, Central Amazonia. Acta Amazonica 37:321–326CrossRefGoogle Scholar
  46. Mannheimer S, Bevilacqua G, Caramaschi EP, Scarano FR (2003) Evidence for seed dispersal by the catfish Auchenipterichthys longimanus in an Amazonian lake. J Trop Ecol 19:215–218CrossRefGoogle Scholar
  47. Marinho TAS (2008) Distribuição e estrutura da população de quatro espécies madeireiras em uma floresta sazonalmente alagável na Reserva de Desenvolvimento Sustentável Mamirauá, Amazônia Central. Master-Diss. Instituto Nacional de Pesquisas da Amazônia, ManausGoogle Scholar
  48. Metcalfe DJ, Grubb PJ (1995) Seed mass and light requirements for regeneration in Southeast Asian rainforest. Can J Bot 73:817–826CrossRefGoogle Scholar
  49. Miquel S (1987) Morphologie fontionelle de plantules d’espèces forestières Humides d’Afrique. Rapport du Séminaire sous-régional, 1-8 juillet 1985, Makokou, Gabon. UNESCO, ParisGoogle Scholar
  50. Moegenburg SM (1996) Sabal palmetto seed size: causes of variation, choices of predators, and consequences for seedlings. Oecologia 106:539–543CrossRefGoogle Scholar
  51. Nassif SML, Israel GV, Fernandes GD (1998) Fatores externos (ambientais) que influenciam na germinação de sementes. Informativo Sementes IPEF – Abril 1998Google Scholar
  52. Ng FSP (1978) Strategies of establishment in Malayan forest trees. In: Tomlinson PB, Zimmerman M (eds) Tropical trees as living systems. Cambridge University Press. New York, pp 129–162Google Scholar
  53. Oliveira AC (1998) Aspectos da dinâmica populacional de Salix martiana Leyb (Salicaceae), em áreas de várzea da Amazônia Central. Master Thesis INPA/FUA, pp 83Google Scholar
  54. Oliveira AC, Piedade MTF (2002) Implicações ecológicas da fenologia reprodutiva de Salix martiana Leyb. (Salicaceae) em áreas de várzea da Amazônia Central. Acta Amazonica 32:377–385Google Scholar
  55. Oliveira Wittmann A (2007) Conteúdo de tococromanóis em espécies arbóreas de várzea da Amazônia Central sob condições controladas. Ph.D. Dissertation Instituto Nacional de Pesquisas da Amazônia, ManausGoogle Scholar
  56. Oliveira-Wittmann A, Piedade MTF, Wittmann F, Parolin P (2007a) Germination in four low-várzea tree species of Central Amazonia. Aquat Bot 86(3):197–203CrossRefGoogle Scholar
  57. Oliveira-Wittmann A, Piedade MTF, Wittmann F, Schöngart J, Parolin P (2007b) Patterns of structure and seedling diversity along a flooding and successional gradient in Amazonian floodplain forests. Pesqui Botân 58:199–138Google Scholar
  58. Parolin P (2001a) Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia 128:326–335CrossRefGoogle Scholar
  59. Parolin P (2001b) Phenology and photosynthesis of six tree species in Central Amazonian floodplains. In: Palo M, Uusivuori J, Mery G (eds) World forests, markets and policies. World forests vol III. Kluwer, Dordrecht/London/Boston, pp 304–305Google Scholar
  60. Parolin P (2002d) Submergence tolerance vs. escape from submergence: two strategies of seedling establishment in Amazonian floodplains. Environm Experim Bot 48(2):177–186Google Scholar
  61. Parolin P (2009) Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Annal Bot Flood Spec Issue 103:359–376CrossRefGoogle Scholar
  62. Parolin P, Armbrüster N, Junk WJ (2006) Two Amazonian floodplain trees react differently to periodical flooding. J Trop Ecol 47:243–250Google Scholar
  63. Parolin P, Junk WJ (2002) The effect of submergence on seed germination in trees from Amazonian floodplains. Bol Mus Par Emilio Goeldi Ser Bot 18:321–329Google Scholar
  64. Parolin P, Lucas C, Piedade MTF, Wittmann F (2010) Drought responses of extremely flood tolerant trees of Amazonian floodplains. Annal Bot (in prep)Google Scholar
  65. Parolin P, Waldhoff D, Piedade MTF (this volume b) Fruit and seed chemistry, biomass and dispersal. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  66. Parolin P, Wittmann F, Schöngart J (this volume c) Tree phenology in Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  67. Pianka ER (1970) On r- and K-selection. Nature 104:592–597Google Scholar
  68. Piedade MTF, Parolin P, Junk WJ (2006) Phenology, fruit production and seed dispersal of Astrocaryum jauari (Arecaceae) in Amazonian black-water floodplains. Revista de Biologia Tropical 54:1171–1178PubMedGoogle Scholar
  69. Pires JM, Prance GT (1985) The vegetation types of the Brazilian Amazon. In: Prance GT, Lovejoy TE (eds) Key environments: Amazonia. Pergamon, Oxford, pp 109–145Google Scholar
  70. Pons TL (2000) Seeds responses to light. In: Fenner M (ed) Seeds the ecology of regeneration in plant communities, 2nd edn. CABI publishing, Wallingford, pp 237–260CrossRefGoogle Scholar
  71. Puhakka M, Kalliola R (1993) La vegetación en áreas de inundación en la selva baja de la Amazonia Peruana. In: Kalliola R, Puhakka M, Danjoy W (eds) Amazonia Peruana: Vegetación húmeda tropical en el llano subandino. Proyecto Amazonia, Turku, pp 113–138Google Scholar
  72. Scarano FR (1998) A comparison of dispersal, germination and establishment of woody plants subjected to distinct flooding regimes in Brazilian flood-prone forests and estuarine vegetation. In: Scarano FR, Franco AC (eds) Ecophysiological strategies of xerophytic and amphibious plants in the neotropics. Series Oecologia Brasiliensis, vol IV. PPGE – UFRJ. Rio de Janeiro, Brazil. pp 177–193Google Scholar
  73. Scarano FR, Pereira TS, Rocas G (2003) Seed germination during floatation and seedling growth of Carapa guianensis, a tree from flood-prone forests of the Amazon. Plant Ecol 168(2):291–296CrossRefGoogle Scholar
  74. Schlüter U-B (1989) Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz zweier charakteristischer Baumarten (Astrocaryum jauari und Macrolobium acaciaefolium) des Weiss- und Schwarz-wasserüberschwemmungswaldes bei Manaus.- ein Beitrag zur Ökosystemanalyse von Várzea und Igapó Zentralamazoniens. Ph.D. Thesis, University of Kiel, GermanyGoogle Scholar
  75. Schlüter UB, Furch B, Joly CA (1993) Physiological and anatomical adaptations by young Astrocaryum jauari Mart (Arecaceae) in periodically inundated biotopes of Central Amazonia. Biotropica 25(4):384–396CrossRefGoogle Scholar
  76. Schöngart J (2003) Dendrochronologische Untersuchungen in Überschwemmungswäldern der várzea Zentralamazoniens. Göttinger Beiträge zur Land- und Forstwirtschaft in den Tropen und Subtropen 149, Erich Goltze Verlag, GöttingenGoogle Scholar
  77. Schöngart J, Junk WJ, Piedade MTF, Ayres JM, Hüttermann A, Worbes M (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño-Southern oscillation effect. Global Change Biol 10:683–692CrossRefGoogle Scholar
  78. Swaine MD, Whitmore TC (1988) On the definition of ecological species groups in tropical rain forests. Vegetatio 75:81–86CrossRefGoogle Scholar
  79. Toledo FF, Marcos Filho J (1977) Manual de Sementes – tecnologia da produção. Agronômica Ceres, São Paulo, p 244Google Scholar
  80. Voesenek LACJ, Benschop JJ, Bou J et al (2003) Interactions between plant hormones regulate submergence-induced shoot elongation in the flooding-tolerant dicot Rumex palustris. Ann Bot 91:205–211PubMedCrossRefGoogle Scholar
  81. Waldhoff D, Furch B (1998) Effect of waterlogging and flooding on some abundant tree species of Central Amazonia examined under defined conditions in climatic chambers. Verhandlungen des Internationalen Vereins Limnologie 26:1886–1871Google Scholar
  82. Waldhoff D, Junk WJ, Furch B (1998) Responses of three Central Amazonian tree species to drought and flooding under controlled conditions. Int J Ecol Environ 24:237–252Google Scholar
  83. Whitmore TC (1990) An introduction to tropical rain forests. Oxford, Claredon Press, p 226Google Scholar
  84. Wittmann F, Anhuf D, Junk WJ (2002b) Tree species distribution and community structure of central Amazonian várzea forests by remote-sensing techniques. J Trop Ecol 18:805–820CrossRefGoogle Scholar
  85. Wittmann F, Junk WJ (2003) Sapling communities in Amazonian white-water forests. J Biogeogr 30:1533–1544CrossRefGoogle Scholar
  86. Wittmann F, Junk WJ, Piedade MTF (2004) The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. Forest Ecol Management 196:199–212CrossRefGoogle Scholar
  87. Wittmann F, Parolin P (2005) Aboveground roots in Amazonian white-water forests. Biotropica 37:609–619CrossRefGoogle Scholar
  88. Wittmann F, Schöngart J, Junk WJ (this volume) Phytogeography, species diversity, community structure and dynamics of central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  89. Worbes M (1986) Lebensbedingungen und Holzwachstum in zentralamazonischen Überschwemmungswäldern. Erich Goltze, Göttingen. Scripta Geobotanica 17:1–112Google Scholar
  90. Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsating system. Ecolog Stud 126:223–265. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  91. Worbes M, Klinge H, Revilla JD, Martius C (1992) On the dynamics, floristic subdivision and geographical distribution of várzea forests in Central Amazonia. J Vegetat Sci 3:553–564CrossRefGoogle Scholar
  92. Zagt RJ, Werger MJA (1998) Community structure and demography of primary species in tropical rain forest. In: Newbery DM, Prins HHT, Brown N (eds) Dynamics of tropical communities. Blackwell Scientific, Cambridge, pp 193–220Google Scholar
  93. Ziburski A (1990) Ausbreitungs- und Reproduktionsbiologie einiger Baumarten der amazonischen Überschwemmungswälder. Unpublished Ph.D. thesis, University HamburgGoogle Scholar
  94. Ziburski A (1991) Dissemination, Keimung und Etablierung einiger Baumarten der Überschwemmungswälder Amazoniens. In: Rauh W (ed) Tropische und subtropische Pflanzenwelt. Akademie der Wissenschaften und der Literatur 77:1–96Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Astrid de Oliveira Wittmann
    • 1
    Email author
  • Aline Lopes
    • 2
  • Auristela Dos Santos Conserva
    • 3
  • Florian Wittmann
    • 4
  • Maria T. F. Piedade
    • 5
  1. 1.National Institute of Amazon Research (INPA)ManausBrazil
  2. 2.University of MaringáParanáBrazil
  3. 3.Mamirauá Institute for Sustainable Development (MISD)TeféBrazil
  4. 4.Biogeochemistry DepartmentMax Planck Institute of ChemistryMainzGermany
  5. 5.Wetlands Ecology and Adaptations of Plants to FloodingNational Institute of Amazon Research (INPA)ManausBrazil

Personalised recommendations