Sap Flow and Stem Respiration

  • Viviana HornaEmail author
  • Reiner Zimmermann
  • Ewald Müller
  • Pia Parolin
Part of the Ecological Studies book series (ECOLSTUD, volume 210)


The effects of seasonal flooding on stem xylem flow and carbon release were investigated on common tree species of the Amazonian floodplain forests locally known as Várzea. The annual flooding lasts several months, reaches five to eight meters and drives the phenology of most forest species. Leaf shedding of deciduous trees starts at the onset of flooding and new leaves are produced after the peak of flooding in July. For evergreen species leaf shedding and new leaf production occur simultaneously during flooding. It has been generally assumed that these phenology patterns are associated to physiological stress during flooding. Here the focus is on tree and species functioning during water stress by flooding. Measurements of stem xylem flux and stem carbon release were taken to monitor changes in species ecophysiological behavior during flooding.

Transpiration of deciduous trees was high and not significantly reduced by the onset of flooding as long as the main foliage was present. In contrast evergreen species had through all seasons constant sap flux rates. In comparison to other studies in tropical and temperate trees, the conductive area estimated for várzea trees is considerably smaller. As a consequence estimated annual stand transpiration was relatively low (283.5 mm).

Regarding carbon release, it was confirmed that variation in CO2 release is associated with variation in flooding. Stem- CO2 emission did not follow changes in leaf phenology but higher stem carbon release was clearly associated higher flooding. The results of this study provide evidence of tree functioning under high metabolic demand due to ambient stress caused by flooding. Future research should focus on the seasonal pattern of carbon allocation and partitioning in várzea trees in relation to species and phenological pattern.


Deciduous Species Evergreen Species High Flooding Sapwood Area Carbon Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andrade JL, Meinzer FC (1998) Regulation of water flux through trunks, branches, and leaves in trees of a lowland topical forest. Oecologia 115:463–471CrossRefGoogle Scholar
  2. Anhuf D, Motzer T, Rollenbeck R, Schröder B, Szarzynski J (1999) Water budget of the Surumoni-crane-site (Venezuela). Selbyana 20:179–185Google Scholar
  3. Ayres JM (1993) As matas de várzea do Mamirauá. In: Sociedade civil Mamirauá (ed) Estudos de Mamirauá, vol.1. Sociedade civil Mamirauá, Mamirauá, pp 1-123Google Scholar
  4. Becker P (1996) Sap flow in Bornean heath and dipterocarp forest trees during wet and dry periods. Tree Physiol 16:295–299PubMedCrossRefGoogle Scholar
  5. Benecke U (1985) Tree respiration in steepland stands of Nothofagus truncata and Pinus radiata. Nelson, New Zealand. In: Turner T, Tranquillini W (eds) Establishment and tending of Subalpine forest: research and management. Eidg Anst Forstl Versuchswes 270, Berlin, pp 61–70Google Scholar
  6. Borchert R, Rivera G (2001) Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees. Tree Physiol 21:201–212PubMedCrossRefGoogle Scholar
  7. Carlquist S (2001) Comparative wood anatomy – systematic, ecological, and evolutionary aspects of dicotyledon wood, 2nd edn. In: Timell TE (ed) Springer series in wood science. Springer, Berlin, p 448Google Scholar
  8. Dünisch O, Morais RR (2002) Regulation of xylem sap flow in an evergreen, a semi-deciduous, and a deciduous Meliaceae species from the Amazon. Trees 16:404–416Google Scholar
  9. Edwards NT, Hanson PJ (1996) Stem respiration in a closed-canopy upland oak forest. Tree Physiol 16:433–439PubMedCrossRefGoogle Scholar
  10. Edwards NT, Shugart HH Jr, McLaughlin SB, Harris WF, Reichle DE (1980) Carbon metabolism in terrestrial ecosystems. In: Reichle DE (ed) Dynamic properties of forest ecosystems. Cambridge University Press, London, pp 499–536Google Scholar
  11. Goldstein G, Andrade JL, Meinzer FC, Holbrook NM, Cavelier J, Jackson P, Celis A (1998) Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant Cell Environ 1:397–406CrossRefGoogle Scholar
  12. Granier A (1985) Une nouvelle methode pour la mesure du flux de seve brute dans le tronc des abres. Ann Sci For 42:193–200CrossRefGoogle Scholar
  13. Granier A (1987) Mesure du flux de seve brute dans le tronc du Douglas par une nouvelle methode thermique. Ann Sci For 42:193–200CrossRefGoogle Scholar
  14. Granier A, Anfodillo T, Sabatti M, Cochard H, Dreyer E, Tomasi M, Valentini R, Breda N (1994) Axial and radial water flow in the trunks of oak trees: a quantitative and qualitative analysis. Tree Physiol 14:1383–1396PubMedCrossRefGoogle Scholar
  15. Granier A, Biron P, Breda N, Pontailler JY, Saugier B (1996a) Transpiration of trees and forest stands: short and long-term monitoring using sapflow methods. Global Change Biol 2:265–274CrossRefGoogle Scholar
  16. Granier A, Bobay V, Gash JHC, Gelpe J, Saugier B, Shuttleworth WJ (1990) Vapour flux density and transpiration rate comparisons in a stand of Maritime pine (Pinus pinaster Ait.) in Les Landes forest. Agric For Meteorol 51:309–319CrossRefGoogle Scholar
  17. Granier A, Huc R, Barigah ST (1996b) Transpiration of natural rain forest and its dependence on climatic factors. Agric For Meteorol 78:19–29CrossRefGoogle Scholar
  18. Havranek WM (1981) Stammatmung, Dickenwachstum und Photosynthese einer Zirbe (Pinus cembra L.) an der Waldgrenze. In: Tranquillini W (ed) Radial growth in trees. Mitt. der Forstl. Bundesversuchsanstalt, Wien, 142, pp 443–467Google Scholar
  19. Horna V (2001) Carbon release from woody parts of trees of a seasonally flooded Amazon forest near Manaus, Brazil. Unpublished Ph.D. thesis, Department of Plant Ecology, University of BayreuthGoogle Scholar
  20. Horna V (2002) Carbon release from woody parts of trees from a seasonally flooded Amazon forest near Manaus, Brasil. Bayreuther Forum Ökologie 94:1–137Google Scholar
  21. Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monograph 1:1–29Google Scholar
  22. Levy PE, Meir P, Allen SJ, Jarvis PG (1999) The effect of aqueous transport of CO2 in xylem sap on gas exchange in woody plants. Tree Physiol 19:53–58PubMedCrossRefGoogle Scholar
  23. Loustau D, Berbigier P, Roumagnac P, Arruda-Pacheco C, David JS, Ferreira MI, Pereira JS, Tavares R (1996) Transpiration of a 64-year-old maritime pine stand in Portugal. 1. Seasonal course of water flux through maritime pine. Oecologia 107:33–42CrossRefGoogle Scholar
  24. Lu P, Biron P, Breda N, Granier A (1995) Water relations of adult Norway spruce (Picea abies (L) Karst) under soil Drought in the Vosges mountains: water potential, stomatal conductance and transpiration. Ann Sci For 52:117–129CrossRefGoogle Scholar
  25. Machado JL, Tyree MT (1994) Patterns of hydraulic architecture and water relations of two tropical canopy trees with contrasting leaf phenologies: Ochroma pyramidale and Pseudobombax septenatum. Tree Physiol 14:219–240PubMedCrossRefGoogle Scholar
  26. Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trees 15:332–337Google Scholar
  27. Meinzer FC (2005) Regulation of water flux through tropical forest canopy trees: do universal rules apply? Tree Physiol 21:19–26CrossRefGoogle Scholar
  28. Meinzer FC, Goldstein G, Franco AC, Bustamante M, Igler E, Jackson P, Caldas L, Rundel PW (1999) Atmospheric and hydraulic limitations on transpiration in Brazilian Cerrado woody species. Funct Ecol 13:273–282CrossRefGoogle Scholar
  29. Meir P (1996) The exchange of carbon dioxide in tropical forests. Ph.D. thesis, University of EdinburghGoogle Scholar
  30. Motzer T, Munz N, Küppers M, Schmitt D, Anhuf D (2005) Stomatal conductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes. Tree Physiol 25:1283–1293PubMedCrossRefGoogle Scholar
  31. Müller D, Nielson J (1965) Production brute, pertes par respiration et production nette dans la foret ombrophile tropicale. Forstl Forsogsvaes Dan 29:69–160Google Scholar
  32. Negisi K (1979) Bark respiration rate in stem segments detached from young Pinus densiflora trees in relation to velocity of artificial sap flow. J Jap For Soc 61:88–93Google Scholar
  33. Nilsen EKT, Orcutt DM (1996) Physiology of plants under stress: abiotic actors. Wiley, New YorkGoogle Scholar
  34. Oren R, Zimmermann R, Terborgh J (1996) Transpiration in upper Amazonia floodplain and upland forests in response to drought-breaking rains. Ecology 77:968–977CrossRefGoogle Scholar
  35. Parolin P (1997) Auswirkungen periodischer Vernässung und Überflutung auf Phänologie, Photosynthese und Blattphysiologie von Baumarten unterschiedlicher Wachstumsstrategie in zentralamazonischen Überschwemmungsgebieten. Unpublished Ph.D. thesis, University of Hamburg, p 156Google Scholar
  36. Parolin P, Müller E, Junk WJ (2005) Water relations of Amazonian várzea trees. Int J Ecol Environ Sci 31:361–364Google Scholar
  37. Parolin P, Müller E, Junk WJ (2008) Sapwood area in seven common tree species of Central Amazon floodplains. Pesqui Botân 59:277–286Google Scholar
  38. Penning de Vries FWT (1975) The cost of maintenance processes in plant cells. Ann Bot 39:77–92Google Scholar
  39. Phillips N, Bond BJ, Ryan MG (2001) Gas exchange and hydraulic properties in the crowns of two tree species in a Panamanian moist forest. Trees 15:123–130CrossRefGoogle Scholar
  40. Roberts J, Cabral OMR, Aguiar LFD (1990) Stomatal and boundary-layer conductances in Amazonian terra firme rain forest. J Appl Ecol 27:336–353CrossRefGoogle Scholar
  41. Rollenbeck R, Anhuf D (2007) Characteristics of the water and energy balance in an Amazonian lowland rainforest in Venezuela and the impact of the ENSO-cycle. J Hydrol 337:377–390CrossRefGoogle Scholar
  42. Ryan MG, Gowe ST, Hubbard RM, Waring RH, Gholz HL, Cropper WP Jr, Running SW (1995) Woody tissue maintenance respiration of four conifers in contrasting climates. Oecologia 101:133–140CrossRefGoogle Scholar
  43. Ryan MG, Hubbard RM, Clark DA, Sanford RL Jr (1994) Woody-tissue respiration for Simarouba amara and Minquartia guianensis, two tropical wet forest trees with different growth habits. Oecologia 100:213–220CrossRefGoogle Scholar
  44. Schlüter U-B (1989) Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz zweier charakteristischer Baumarten (Astrocaryum jauari und Macrolobium acaciaefolium) des Weiss- und Schwarz-wasserüberschwemmungswaldes bei Manaus.- ein Beitrag zur Ökosystemanalyse von Várzea und Igapó Zentralamazoniens. Ph.D. Thesis, University of Kiel, GermanyGoogle Scholar
  45. Schlüter UB, Furch B (1992) Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz des Baumes Macrolobium acaciaefolium, charakteristisch für die Weißund Schwarzwasser-Überschwemmungswälder bei Manaus, Amazonas. Amazoniana 12:51–69Google Scholar
  46. Scholz F, Bucci SJ, Goldstein G, Meinzer F, Franco AC, Miralles-Wilhelm F (2007) Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees. Plant Cell Environ 30:236–248PubMedCrossRefGoogle Scholar
  47. Schöngart J, Piedade MTF, Ludwigshausen S, Horna V, Worbes M (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597CrossRefGoogle Scholar
  48. Shuttleworth WJ, Gash JHC, Lloyd CR, Moore CJ, Roberts J, AdO M, Fisch G, VdP SF, Ribeiro MNG, Molion LCB, de Sa LDA, Nobre JC, Cabral OMC, Patel SR, de Moraes JC (1984) Eddy correlation measurements of energy partition for Amazonian forest. Q J R Meteorol Soc 110:1143–1162CrossRefGoogle Scholar
  49. Sprugel DG, Benecke U (1991) Measuring woody-tissue respiration and photosynthesis. In: Lassoie JP, Hinckley TM (eds) Techniques and approaches in forest tree ecophysiology, vol 1. CRC Press, Boston, pp 329–355Google Scholar
  50. Stevens KJ, Larry Peterson R, Reader RJ (2002) The aerenchymatous phellem of Lythrum salicaria (L.): a pathway for gas transport and its role in flood tolerance. Ann Bot 89:621–625PubMedCrossRefGoogle Scholar
  51. Waldhoff D, Junk WJ, Furch B (1998) Responses of three Central Amazonian tree species to drought and flooding under controlled conditions. Int J Ecol Environ 24:237–252Google Scholar
  52. Waring RH, Schlesinger WH (1985) Forest ecosystems: concepts and management. Academic Press, OrlandoGoogle Scholar
  53. Whitmore TC (1984) Tropical rainforests of the far east, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  54. Wittmann F, Parolin P (1999) Phenology of six tree species from central Amazonian várzea. Ecotropica 5(1):51–57Google Scholar
  55. Worbes M (1983) Vegetationskundliche Untersuchungen zweier Überschwemmungswälder in Zentralamazonien – vorläufige Ergebnisse. Amazoniana 8(1):47–66Google Scholar
  56. Worbes M (1986) Lebensbedingungen und Holzwachstum in zentralamazonischen Überschwemmungswäldern. Erich Goltze, Göttingen. Scripta Geobotanica 17:1–112Google Scholar
  57. Worbes M (1992) Occurrence of seasonal climate and tree-ring research in the tropics. Lundqua Report 34:338–342Google Scholar
  58. Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsating system. Ecolog Stud 126:223–265. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  59. Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403CrossRefGoogle Scholar
  60. Yoda K (1967) Comparative ecological studies on three main types of forest vegetation in Thailand. III. Community respiration. Nat Life SE Asia 5:83–148Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Viviana Horna
    • 1
    Email author
  • Reiner Zimmermann
    • 2
  • Ewald Müller
    • 3
    • 4
  • Pia Parolin
    • 5
  1. 1.Albrecht-von-Haller-Institut für Pflanzenwissenschaften Abteilung Ökologie und ÖkosystemforschungUniversity of GöttingenGöttingenGermany
  2. 2.Institute of Botany and Botanical Gardens (210), Forest Ecology and Remote Sensing GroupUniversity of HohenheimHohenheimGermany
  3. 3.Former researcher in the Working Group of Tropical Ecology at the Max Planck Institute for LimnologyPlönGermany
  4. 4.National Institute of Amazon Research (INPA)ManausGermany
  5. 5.Systematik der PflanzenUniversity of Hamburg, Biozentrum Klein FlottbekHamburgGermany

Personalised recommendations