Advertisement

Gas Exchange and Photosynthesis

  • Pia ParolinEmail author
  • Danielle Waldhoff
  • Maria T. F. Piedade
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 210)

Abstract

Gas exchange and photosynthetic activity give insight into the energy balance of plants. These parameters, as well as transpiration, stomatal conductance, intercellular CO2 concentrations, leaf chlorophyll and nitrogen contents, are especially interesting because they can be measured directly on the living organs and thus make statements possible about the physiological condition of a trees in different hydric conditions. Photosynthetic assimilations measured under natural conditions in Amazonian floodplains lie in the same range as those of other tropical woody plants. Responses to waterlogging show decreases: overall means of physiological parameters are higher in the non-flooded period in most analysed species, but many trees also perform the highest absolute values of CO2 assimilation in the aquatic phase. Like in other wetland species, flooding in many Amazonian floodplain species enhances stomatal conductance, leaf water potential and net photosynthesis, especially under conditions leading to high air-vapour pressure deficits. The tree species developed a high diversity of adaptive strategies, with tight regulation of water and carbon relations under severe soil-oxygen deficiencies. This may allow them to cope with flooding and even drought problems and permit high photosynthetic activities during most of the year, and thus gives these species the dominance over natural competitors which may be more efficient under non-flooded conditions but are unable to compete when inundated.

Keywords

Stomatal Conductance Leaf Chlorophyll Content Leaf Nitrogen Content Photosynthetic Assimilation High Photosynthetic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Armbrüster N (1999) Auswirkungen von Überflutung auf Photosynthese, Blattphysiologie und Phänologie zweier Baumarten des zentralamazonischen Überschwemmungswaldes. Diplomarbeit Uni Oldenburg, p 88Google Scholar
  2. Bazzaz FA (1991) Regeneration of tropical forests: physiological responses of pioneer and secondary species. In: Gomez-Pompa A, Whitmore TC, Hadley M (eds) Rain forest regeneration and management. The Parthenon Publishing Group, London, pp 91–118Google Scholar
  3. Bazzaz FA, Pickett STA (1980) Physiological ecology of tropical succession: a comparative review. Annu Rev Ecol System 11:287–310CrossRefGoogle Scholar
  4. Bolhár-Nordenkampf HR, Götzl M (1992) Chlorophyllfluoreszenz als Indikator der mit Seehöhe zunehmenden Streßbelastung von Fichtennadeln. FBVA Berichte Schriftenreihe d Forstl Bundesveranst 67:119–131Google Scholar
  5. Buschmann C, Grumbach K (1985) Physiologie der Photosynthese. Springer, Berlin/Heidelberg/New York/TokyoCrossRefGoogle Scholar
  6. Crawford RMM (1992) Oxygen availability as an ecological limit to plant distribution. Adv in Ecol Res 23:93–185CrossRefGoogle Scholar
  7. De Simone O (2003) Root adaptations of várzea tree species to prolonged flooding. Unpublished Ph.D. Thesis, University Oldenburg, p 125Google Scholar
  8. Farias ML (2007) Ecofisiologia de duas espécies arbóreas da várzea e da terra firme da Amazônia Central. Unpubl Master-Thesis, Universidade do Amazonas (UA), Instituto Nacional de Pesquisas da Amazônia (INPA), ManausGoogle Scholar
  9. Ferreira CS (2002) Germinação e adaptações metabólicas e morfo-anatômicas em plântulas de Himatanthus succuuba (Spruce) Wood., de ambientes de várzea e terra firme na Amazônia Central. Unpubl Master Thesis, Universidade do Amazonas (UA), Instituto Nacional de Pesquisas da Amazônia (INPA), p 95Google Scholar
  10. Field C, Mooney HA (1983) Leaf age and seasonal effects on light, water, and nitrogen use efficiency in a California shrub. Oecologia 56:348–355CrossRefGoogle Scholar
  11. Furch B (1984) Untersuchungen zur Überschwemmungstoleranz von Bäumen der Várzea und des Igapó. Blattpigmente. Biogeographica 19:77–83Google Scholar
  12. Furch K (1997) Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecolog Stud 126:47–68. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  13. Graffmann KC (2000) Die Bedeutung der Druckventilation für die Sauerstoffversorgung des Wurzelsystems bei Bäumen der amazonischen Überschwemmungswälder. Dissertation Uni Köln, p 91Google Scholar
  14. Horna V (2001) Carbon release from woody parts of trees of a seasonally flooded Amazon forest near Manaus, Brazil. Unpublished Ph.D. thesis, Department of Plant Ecology, University of BayreuthGoogle Scholar
  15. Horna V, Zimmermann R, Müller E, Parolin P (this volume) Sap flow and stem respiration. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  16. Irion G, Junk WJ, Mello JASN (1997) The large Central Amazonian river floodplains near Manaus: geological, climatological, hydrological, and geomorphological aspects. In: Junk WJ (ed) The Central Amazon floodplains. Ecology of a pulsing system. Springer, Berlin/Heidelberg/New York, pp 23–46CrossRefGoogle Scholar
  17. Joly CA, Crawford RMM (1982) Variation in tolerance and metabolic responses to flooding in some tropical trees. J Experiment Bot 33:799–809CrossRefGoogle Scholar
  18. Junk WJ (1997b) General aspects of floodplain ecology with special reference to Amazonian floodplains. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecolog Studies 126:3–20. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  19. Keel SHK, Prance GT (1979) Studies of the vegetation of a white-sand black-water igapó (Rio Negro, Brazil). Acta Amazonica 9:645–655Google Scholar
  20. Kozlowski TT (1984a) Plant response to flooding of soil. BioScience 34(3):162–167CrossRefGoogle Scholar
  21. Kozlowski TT (1984b) Responses of woody plants to flooding. Flooding and plant growth. Academic Press, Orlando, FL, pp 129–163Google Scholar
  22. Krack S (2000) Untersuchungen zur Überflutungstoleranz von Bäumen (Jungpflanzen) der zentralamazonischen Weisswasser-Überschwemmungswälder (várzea) bei Manaus, Amazonas. Universität Würzburg, Master-DissGoogle Scholar
  23. Kubitzki K (1989a) The ecogeographical differentiation of Amazonian inundation forests. Plant Syst Evol 162:285–304CrossRefGoogle Scholar
  24. Kubitzki K (1989b) Amazonas-Tiefland und Guayana-Hochland – historische und ökologische Aspekte der Florenentwicklung. Amazoniana 11:1–12Google Scholar
  25. Kubitzki K (1989c) Die Flora der amazonischen Überschwemmungswälder und ihre ökologischen Beziehungen. In: Hartmann G (ed) Amazonien im Umbruch. Dietrich Reimer Verlag, pp 215-226Google Scholar
  26. Kyparissis A, Petropoulou Y, Manetas Y (1995) Summer survival of leaves in a soft-leaved shrub (Phlomis fruticosa L, Labiatae) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. J Exp Bot 46(293):1825–1831CrossRefGoogle Scholar
  27. Larcher W (1994) Ökophysiologie der Pflanzen: Leben, Leistung und Streßbewältigung der Pflanzen in ihrer Umwelt. 5 Aufl Ulmer Stuttgart, UTB für Wissenschaft 394 SGoogle Scholar
  28. Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662CrossRefGoogle Scholar
  29. Maia LA (1997) Influência do pulso de inundação na fisiologia, fenologia e produçao de frutos de Hevea spruceana (Euphorbiaceae) e Eschweilera tenuifolia (Lecythidaceae), em área inundável de igapó da Amazônia central. Unpublished Ph.D. Thesis, INPA/FUA Manaus, p 186Google Scholar
  30. May DJ, Killingbeck KT (1992) Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics. Ecology 73:1868–1878CrossRefGoogle Scholar
  31. Medina E (1984) Nutrient balance and physiological processes at the leaf level. In: Medina E, Mooney HA, Vazques-Yanes C (eds) Physiological ecology of plants of the wet tropics. Junk Publ Kluwer, Boston, pp 134–154Google Scholar
  32. Medina E, Klinge H (1983) Productivity of tropical forests and tropical woodlands. Encyclopedia Plant Physiol 12D:281–303. Springer, Berlin, HeidelbergGoogle Scholar
  33. Medina E, Lieth H (1964) Die Beziehungen zwischen Chlorophyllgehalt, assimilierender Fläche und Trockensubstanzproduktion in einigen Pflanzengemeinschaften. Beitr Biol Pflanzen 40:451–494Google Scholar
  34. Meyer U (1991) Feinwurzelsysteme und Mykorrhizatypen als Anpassungsmechanismen in zentralamazonischen Überschwemmungswäldern- Igapó and Várzea. Ph.D. thesis, University of Hohenheim, GermanyGoogle Scholar
  35. Millard P, Proe MF (1991) Leaf demography and the seasonal internal cycling of nitrogen in sycamore (Acer pseudoplatanus L) seedlings in relation to nitrogen supply. New Phytolt 117:587–596CrossRefGoogle Scholar
  36. Mooney HA, Björkman O, Hall AE, Medina E, Tomlinson PB (1980) The study of the physiological ecology of tropical plants – current status and needs. BioScience 30:22–26CrossRefGoogle Scholar
  37. Müller E (2002) Water relations and stem water usage of trees from the Central Amazonian whitewater floodplain (Várzea). Lieberei R, Bianchi H-K, Boehm V, Reissdorff C (eds) Proceedings of the German-Brazilian workshop Hamburg 2000. GKSS Geesthacht, pp 623–627Google Scholar
  38. Oberbauer FS, Strain BR (1984) Photosynthesis and successional status of Costa Rican rain forest trees. Photosynth Res 5:227–232CrossRefGoogle Scholar
  39. Osman AM, Milthorpe FL (1971) Photosynthesis of wheat leaves in relation to age, illuminance and nutrient supply. II Results. Photosynthetica 5:61–70Google Scholar
  40. Parolin P (1997) Auswirkungen periodischer Vernässung und Überflutung auf Phänologie, Photosynthese und Blattphysiologie von Baumarten unterschiedlicher Wachstumsstrategie in zentralamazonischen Überschwemmungsgebieten. Unpublished Ph.D. thesis, University of Hamburg, p 156Google Scholar
  41. Parolin P (2000a) Growth, productivity, and use of trees in white water floodplains. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) The central Amazon floodplain: actual use and options for a sustainable management. Backhuys Publishers b.V, Leiden, pp 375–391Google Scholar
  42. Parolin P (2000b) Seed mass in Amazonian floodplains forest with contrasting nutrients supplies. J Trop Ecol 16:417–428CrossRefGoogle Scholar
  43. Parolin P (2001a) Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia 128:326–335CrossRefGoogle Scholar
  44. Parolin P, Junk WJ, Piedade MTF (2001) Gas exchange of six tree species from Central Amazonian floodplains. Trop Ecol 42(1):15–24Google Scholar
  45. Piedade MTF (1985) Ecologia e biologia reprodutiva de Astrocaryum jauari Mart. (Palmae) como exemplo de populaçao adaptada as áreas inundáveis do rio Negro. Unpublished Master thesis INPA, ManausGoogle Scholar
  46. Piedade MTF, Junk WJ, Long SP (1991) The productivity of the C4 grass Echinochloa polystachia on the Amazon Floodplain. Ecology 72(4):1456–1463CrossRefGoogle Scholar
  47. Piedade MTF, Junk WJ, Parolin P (2000) The flood pulse and photosynthetic response of trees in white water floodplain (várzea) of the Central Amazon, Brazil. Verh Internt Verein Limnol 27(4):1734–1739Google Scholar
  48. Piedade MTF, Long SP, Junk WJ (1994) Leaf and canopy photosynthetic CO2 uptake of a stand of Echinochloa polystachya on the Central Amazon floodplain. Are the high potential rates associated with the C4 syndrome realized under the near-optimal conditions provided by this exceptional natural habitat? Oecologia 97:193–201CrossRefGoogle Scholar
  49. Ponnamperuma FN (1984) Effects of flooding on soils. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, London, pp 9–45Google Scholar
  50. Prance GT (1979) Notes on the vegetation of Amazonia. 3. The terminology of Amazonian forest types subject to inundation. Brittonia 31:26–38CrossRefGoogle Scholar
  51. Rubio G, Casasola G, Lavado RS (1995) Adaptations and biomass production of two grasses in response to waterlogging and soil nutrient enrichment. Oecologia 102:102–105Google Scholar
  52. Scarano FR, Cattânio JH, Crawford RMM (1994) Root carbohydrate storage in young saplings of an Amazonian tidal várzea forest before the onset of the wet season. Acta Botanica Brasilica 8(2):129–139Google Scholar
  53. Schlüter U-B (1989) Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz zweier charakteristischer Baumarten (Astrocaryum jauari und Macrolobium acaciaefolium) des Weiss- und Schwarz-wasserüberschwemmungswaldes bei Manaus.- ein Beitrag zur Ökosystemanalyse von Várzea und Igapó Zentralamazoniens. Ph.D. Thesis, University of Kiel, GermanyGoogle Scholar
  54. Schlüter UB, Furch B (1992) Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz des Baumes Macrolobium acaciaefolium, charakteristisch für die Weißund Schwarzwasser-Überschwemmungswälder bei Manaus, Amazonas. Amazoniana 12:51–69Google Scholar
  55. Schlüter UB, Furch B, Joly CA (1993) Physiological and anatomical adaptations by young Astrocaryum jauari Mart (Arecaceae) in periodically inundated biotopes of Central Amazonia. Biotropica 25(4):384–396CrossRefGoogle Scholar
  56. Scholander PF, Perez MO (1968) Sap tension in flooded trees and bushes of the Amazon. Plant Physiol 43:1870–1873PubMedCrossRefGoogle Scholar
  57. Schulze ED, Kelliher FM, Körner C, Lloyd J, Leuning R (1994) Relationship among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: a global ecology scaling exercise. Annu Rev Ecol Syst 25:629–660CrossRefGoogle Scholar
  58. Seaton GR, Walker DA (1992) Validating chlorophyll fluorescence measures of efficiency: observations on fluorimetric estimation of photosynthetic rate. Proc R Soc Lond B 249:41–47CrossRefGoogle Scholar
  59. Sestak Z (1985) Photosynthesis during leaf development. Dr WJunk Publ Dordrecht Boston Lancaster 396 ppGoogle Scholar
  60. Sioli H (1954b) Betrachtungen über den Begriff “Fruchtbarkeit” eines Gebiets anhand der Verhältnisse in Böden und Gewässern Amazoniens. Forschung Fortschritt 28:65–72Google Scholar
  61. Swaine MD, Whitmore TC (1988) On the definition of ecological species groups in tropical rain forests. Vegetatio 75:81–86CrossRefGoogle Scholar
  62. Waldhoff D, Furch B, Junk WJ (2002) Fluorescence parameters, chlorophyll concentration, and anatomical features as indicators for flood adaptation of an abundant tree species in Central Amazonia: Symmeria paniculata. Environ Experimen Bot 48(3):225–235CrossRefGoogle Scholar
  63. Waldhoff D, Junk WJ, Furch B (1998) Responses of three Central Amazonian tree species to drought and flooding under controlled conditions. Int J Ecol Environ 24:237–252Google Scholar
  64. Waldhoff D, Junk WJ, Furch B (2000) Comparative measurements of growth and chlorophyll a fluorescence parameters of Nectandra amazonum under different environmental conditions in climatized chambers. Verh Intern Verein Limnol 27:2052–2056Google Scholar
  65. Whiteman PC, Seitlheko M, Siregar ME, Chudasama AK, Javier RR (1984) Short-term flooding tolerance of seventeen commercial tropical pasture legumes. Trop Grasslands 18(2):91–96Google Scholar
  66. Wittmann F, Parolin P (1999) Phenology of six tree species from central Amazonian várzea. Ecotropica 5(1):51–57Google Scholar
  67. Zaerr JB (1983) Short-term flooding and net photosynthesis in seedlings of three conifers. Forest Sci 29(1):71–78Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Pia Parolin
    • 1
    Email author
  • Danielle Waldhoff
    • 2
  • Maria T. F. Piedade
    • 3
  1. 1.Flottbek Systematik der PflanzenUniversity of Hamburg, Biozentrum KleinHamburgGermany
  2. 2.Institute for LimnologyPlönGermany
  3. 3.Wetlands Ecology and Adaptations of Plants to FloodingNational Institute of Amazon Research (INPA)ManausBrazil

Personalised recommendations