Skip to main content

Geological Media and Factors for the Long-Term Emplacement and Isolation of Carbon Dioxide and Radioactive Waste

  • Chapter
  • First Online:
Geological Disposal of Carbon Dioxide and Radioactive Waste: A Comparative Assessment

Part of the book series: Advances in Global Change Research ((AGLO,volume 44))

Abstract

A review is presented of the factors considered important in the selection of environments and sites for the geological storage of carbon dioxide (CO2) and the disposal of radioactive waste (RW)—with a focus on those of a geological nature. The distinction between the terms storage for CO2 and disposal for RW is not significant in this regard. The relevant properties of the two product types are presented, as are the desirable characteristics and types of geological environments that are considered suitable for disposal purposes. The role that the geological barrier plays in trapping the disposed substance, in the case of CO2, and in containing and slowly releasing the waste, in the case of RW, is explained. The comparative roles played by the geological barrier and the engineered barrier system of a repository for RW is also outlined—although the emphasis of the discussion is on the geological barrier itself. The status and challenges associated with the storage of CO2 are presented, together with a discussion of the geographic distribution of areas of the world potentially suitable for its storage and the criteria for site selection that could be applied. A discussion is also presented of the geological environments that are most likely to be used for the disposal of RW.

A considerable part of the chapter presents a comparison between the storage or disposal of the two types of disposed substances, discussing their similarities and differences. This comparison is considered under the four subject headings: Characteristics of the Geological Media, Emplacement Characteristics, Effects of Emplacement and Potential Migration from the Disposal Site, and Site Activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander WR, McKinley LE (eds) (2007) Deep Geological Disposal of Radioactive Waste. Elsevier, Amsterdam

    Google Scholar 

  • Andersson J, Ström A, Svemar C, Almén K-E, Ericsson L (2000) What requirements does the KBS-3 repository make on the host rock? Geoscientific suitability indicators and criteria for siting and site evaluation. SKB Technical Report TR-00-12. Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • Andersson J, Ahokas H, Hudson JA, Koskinen L, Luukonen A, Löfman J, Keto V, Pitkänen P, Mattila J, Ikonen A, Ylä-Mella M (2007) Olkiluoto site description 2006. Report POSIVA 2007-03. Posiva Oy, Olkiluoto

    Google Scholar 

  • Aya I, Yamane K, Shiozaki K (1999) Proposal of self sinking CO2 sending system: COSMOS. In: Eliasson B, Riemer PWF, Wokaun A (eds) Greenhouse Gas Control Technologies: Proceedings of the 4th International Conference on Greenhouse Gas Control Technologies. Pergamon, Amsterdam, pp 269–274

    Google Scholar 

  • Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44(3):277–289

    Article  Google Scholar 

  • Bachu S (2008a) CO2 storage in geological media: role, means, status and barriers to deployment. Prog Energy Combust Sci 34(2):254–273

    Article  Google Scholar 

  • Bachu S (2008b) Legal and regulatory challenges in the implementation of CO2 geological storage: an Alberta and Canadian perspective. Int J Greenhouse Gas Control 2(2):259–273

    Article  Google Scholar 

  • Bachu S (2010) Screening and selection criteria, and characterisation for CO2 storage. In: Maroto-valer M (ed) Developments and Innovation in Carbon Dioxide (CO2) Capture And Storage Technology, v. 2, Woodhead Energy Series 16, Woodhead Publishing Ltd., UK, pp. 27–56

    Article  Google Scholar 

  • Bachu S, Bennion B (2008) Effects of in-situ conditions on relative permeability characteristics of CO2-brine systems. Environ Geol 54:1707–1722. doi:10.1007/s00254-007-0946-9

    Article  Google Scholar 

  • Bachu S, Celia MA (2009) Assessing the potential for CO2 leakage, particularly through wells, from geological storage sites. In: McPherson BJOL, Sundquist E (eds) The Science of CO2 Storage. AGU Monograph Series GM148. American Geophysical Union, Washington, DC, USA, pp. 203–216

    Google Scholar 

  • Bachu S, Gunter WD (2005) Overview of acid gas injection operations in western Canada. In: Rubin ES, Keith DW, Gilboy CF (eds) Greenhouse Gas Control Technologies: Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, vol 1. Elsevier, London, pp 443–448

    Google Scholar 

  • Bachu S, Gunter WD, Perkins EH (1994) Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Convers Manage 35(4):269–279

    Article  Google Scholar 

  • Bennion B, Bachu S (2007) Permeability and relative permeability measurements at reservoir conditions for CO2-water systems in ultra low permeability confining caprocks. Paper SPE 106995. Europec/EAGE Annual Conference and Exhibition, London, 11–14 June 2007

    Google Scholar 

  • Bradshaw J, Dance T (2005) Mapping geological storage prospectivity of CO2 for the world’s sedimentary basins and source-to-sink matching. In: Rubin ES, Keith DW, Gilboy CF (eds) Greenhouse Gas Control Technologies: Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, vol 1. Elsevier, London, pp 583–591

    Google Scholar 

  • Bradshaw J, Bradshaw BE, Allinson G, Rigg AJ, Nguyen V, Spencer A (2002) The potential for geological sequestration of CO2 in Australia: preliminary findings and implications for new gas field development. Aust Petrol Prod Explor Assoc J 42(1):25–46

    Google Scholar 

  • Brunskill B, Wilson M (2011) Monitoring methods used to identify the migration of carbon dioxide and radionuclides in the geosphere. In this volume

    Google Scholar 

  • Carey JW, Wigand M, Chipera SJ, Woldegabriel G, Pawar R, Lichtner PC, Wehner SC, Raines MA, Guthrie GD (2007) Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA. In: Gale J, Bolland O (eds) 8th International Conference on Greenhouse Gas Control Technologies—GHGT-8. Int J Greenhouse Gas Control 1(1):75–85

    Google Scholar 

  • Chapman N, McCombie C (2003) Principles and Standards for the Disposal of Long-lived Radioactive Wastes. Elsevier, Amsterdam

    Google Scholar 

  • Chapman NA, McKinley IG (1987) The Geological Disposal of Nuclear Waste. Wiley, London

    Google Scholar 

  • Chikatamarla L, Bustin MR (2003) Sequestration potential of acid gases in Western Canadian coals. In: Proceedings of the 2003 International Coalbed Symposium. The University of Alabama, Tuscaloosa, AL

    Google Scholar 

  • Chiquet P, Daridon JL, Broseta D, Thibeau S (2007) CO2/water interfacial tensions under pressure and temperature conditions of CO2 geological storage. Energy Convers Manage 48(3):736–744

    Article  Google Scholar 

  • Connor CB, Chapman NA, Connor LJ (eds) (2009) Volcanic and Tectonic Hazard Assessment for Nuclear Facilities. Cambridge University Press, Cambridge

    Google Scholar 

  • Cui X, Bustin RM, Chikatamarla L (2007) Adsorption-induced coal swelling and stress: implications for methane production and acid gas sequestration into coal seams. J Geophys Res 112:B10202. doi:10.1029/2004JB003482

    Article  Google Scholar 

  • Defra (Department for the Environment, Food and Rural Affairs) (2008) Managing Radioactive Waste Safely: A Framework for Implementing Geological Disposal. Stationery Office, London

    Google Scholar 

  • Degnan P, Bath A, Cortés A, Delgado J, Haszeldine S, Milodowski A, Puigdomenech I, Recreo F, Silar J, Torres T, Tullborg E-L (2005) PADAMOT: Project overview report. PADAMOT Project Technical Report. http://www.bgs.ac.uk/padamot/documents.html

  • Dusseault MB, Bachu S, Rothenburg L (2004) Sequestration of CO2 in salt caverns. J Can Pet Technol 43(11):49–55

    Google Scholar 

  • EC (European Commission) (2004) Thematic network on the role of monitoring in a phased approach to the geological disposal of radioactive waste. Nuclear science and technology, Final Report EUR 21025 EN. European Commission, Luxembourg

    Google Scholar 

  • NEA (Nuclear Energy Agency) (2005) Stability and buffering capacity of the geosphere for long-term isolation of radioactive waste: application to argillaceous media. In: “Clay Club” Workshop Proceedings, Braunschweig, Germany, 9–11 Dec 2003. OECD, Paris

    Google Scholar 

  • NEA (Nuclear Energy Agency) (2009) Stability and buffering capacity of the geosphere for long-term isolation of radioactive waste: application to crystalline rock. In: Workshop Proceedings, Manchester, UK, 13–15 Nov 2007. OECD Publishing, Paris

    Google Scholar 

  • Enick RM, Klara SM (1990) CO2 solubility in water and brine under reservoir conditions. Chem Eng Commun 90:23–33

    Article  Google Scholar 

  • Ennis-King JP, Paterson L (2003) Role of convective mixing in the long term storage of carbon dioxide in deep saline formations. SPE J 10:349–356

    Google Scholar 

  • Fenghour A, Wakeham WA, Vesovic V (1998) The viscosity of carbon dioxide. J Phys Chem Ref Data 27(1):31–44

    Article  Google Scholar 

  • Förster A, Norden B, Zink-Jørgensen K, Frykma P, Kulenkampff J, Spangenberger E, Erzinger J, Zimmer M, Kopp J, Borm G, Juhlin C, Cosma C, Hurter S (2006) Baseline characterization of the CO2SINK geological storage site at Ketzin, Germany. Environ Geosci 13(3):145–161

    Article  Google Scholar 

  • Gunter WD, Bachu S, Benson SM (2004) The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. In: Baines SJ, Worden RH (eds) Geological Storage of Carbon Dioxide, vol 233, Geological society special publication. Geological Society of London, London, pp 129–145

    Google Scholar 

  • Gurevich AE, Endres BL, Robertson JO, Chilingar GV (1993) Gas migration from oil and gas fields and associated hazards. J Petrol Sci Eng 9:223–238

    Article  Google Scholar 

  • Hedin A (1997) Spent nuclear fuel—How dangerous is it? SKB Technical Report TR-97-13. Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • Hepple RP, Benson SM (2005) Geologic storage of carbon dioxide as a climate change mitigation strategy: performance requirements and the implications of surface seepage. Environ Geol 47:576–585

    Article  Google Scholar 

  • Hitchon B, Gunter WD, Gentzis T, Bailey RT (1999) Sedimentary basins and greenhouse gases: a serendipitous association. Energy Convers Manage 40:825–843

    Article  Google Scholar 

  • Holloway S, Garg A, Kapshe M, Deshpande A, Pracha AS, Khan SR, Mahmood MA, Singh TN, Kirk KL, Gale J (2009) An assessment of the CO2 storage potential of the Indian subcontinent. In: Gale J, Herzog H, Braitsch J (eds) Proceedings of the 9th International Conference on Greenhouse Gas Control Technologies. Energy procedia, vol 1, pp 2607–2613

    Google Scholar 

  • Holm LW, Josendal VA (1982) Effect of oil composition on miscible-type displacement by carbon dioxide. SPE J 22(1):87–98

    Google Scholar 

  • Hovorka SD, Benson SM, Doughty C, Freifeld BM, Sakurai A, Daley TM, Kharaka YK, Holtz MH, Trautz RC, Nance HS, Myer LR, Knauss KG (2006) Measuring permanence of CO2 storage in saline formations: the Frio experiment. Environ Geosci 13(2):105–121

    Article  Google Scholar 

  • IAEA (International Atomic Energy Agency) (1994) Classification of Radioactive Waste, IAEA Safety Series No. 111-G-1.1. IAEA, Vienna

    Google Scholar 

  • IAEA (International Atomic Energy Agency) (1995) The Principles of Radioactive Waste Management, IAEA Safety Series No. 111-F. IAEA, Vienna

    Google Scholar 

  • Ide ST, Jessen K, Orr FM Jr (2007) Storage of CO2 in saline aquifers: effects of gravity, viscous and capillary forces on amount and timing of trapping. Int J Greenhouse Gas Control 1(4):481–491

    Article  Google Scholar 

  • IEA (International Energy Agency) (2004) Prospects for CO2 Capture and Storage. OECD/IEA, Paris

    Book  Google Scholar 

  • IEA (International Energy Agency) (2006) Energy Technology Perspectives: Scenarios and Strategies to 2050. OECD/IEA, Paris

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Metz B, Davidson O, de Coninck HC, Loos M, Meyer LA (eds) Cambridge University Press, Cambridge, New York

    Google Scholar 

  • JNC (Japan Nuclear Cycle Development Institute) (2000) H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan. Japan Atomic Energy Agency, Tokai

    Google Scholar 

  • Juanes R, Spiteri EJ, Orr FM Jr, Blunt MJ (2006) Impact of relative permeability hysteresis on geological CO2 storage. Water Resour Res 42:W12418

    Article  Google Scholar 

  • Kohl AL, Nielsen RB (1997) Gas Purification. Gulf Publishing Company, Houston

    Google Scholar 

  • Kumar A, Ozah R, Noh M, Pope GA, Bryant S, Sepehrnoori K, Lake LW (2005) Reservoir simulation of CO2 storage in deep saline aquifers. SPE J 10(3):336–348

    Google Scholar 

  • Kutchko BG, Strazisar BR, Dzombak DA, Lowry GV, Thaulow N (2007) Degradation of well cement by CO2 under geologic sequestration conditions. Environ Sci Technol 41(12):4787–4792

    Article  Google Scholar 

  • Larsen JW (2003) The effects of dissolved CO2 on coal structure and properties. Int J Coal Geol 57(1):63–70

    Article  Google Scholar 

  • Maul P (2011) Risk assessment, risk management and remediation for the geological disposal of radioactive waste and storage of carbon dioxide. In this volume

    Google Scholar 

  • Maul PR, Metcalfe R, Pearce J, Savage D, West JM (2007) Performance assessments for the geological storage of carbon dioxide: learning from the radioactive waste disposal experience. Int J Greenhouse Gas Control 1(4):444–455

    Article  Google Scholar 

  • McCombie C (2007) Repository implementation. In: Alexander WR, McKinley LE (eds) Deep Geological Disposal of Radioactive Waste. Elsevier, Amsterdam, pp 169–193

    Chapter  Google Scholar 

  • McEwen T (2004) A review of the deep borehole disposal concept for radioactive waste. Report to United Kingdom Nirex Limited. Nirex Report No. N/108. Harwell

    Google Scholar 

  • McEwen T (2007) Site selection and characterisation. In: Alexander WR, McKinley LE (eds) Deep Geological Disposal of Radioactive Waste. Elsevier, Amsterdam, pp 77–111

    Chapter  Google Scholar 

  • McEwen T, Andersson J (2009) Stable tectonic settings: designing site investigations to establish the tectonic basis for design and safety evaluation of geological repositories in Scandinavia. In: Connor CB, Chapman NA, Connor LJ (eds) Volcanic and Tectonic Hazard Assessment for Nuclear Facilities. Cambridge University Press, Cambridge

    Google Scholar 

  • McGinnes DF (2007) Waste sources and classification. In: Alexander WR, McKinley LE (eds) Deep Geological Disposal of Radioactive Waste. Elsevier, Amsterdam, pp 8–40

    Chapter  Google Scholar 

  • McKee CR, Bumb AC, Koenig RA (1988) Stress-dependent permeability and porosity of coal and other geologic formations. SPE Formation Eval 4:81–91

    Google Scholar 

  • Moritis G (2006) CO2 injection gains momentum. Oil Gas J 104(15):37–57

    Google Scholar 

  • Nagra (Nationale Genossenschaft für die Lagerung radioaktiver Abfälle—National Cooperative for the Disposal of Radioactive Waste) (2002) Project Opalinus Clay: safety report—demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste (Entsorgungsnachweis). Technical Report NTB 02-05. Nagra, Wettingen. http://www.nagra.ch

  • National Research Council (2003) One Step at a Time: The Staged Development of Geologic Repositories for High-level Radioactive Waste. The National Academies Press, Washington, DC

    Google Scholar 

  • Newlands IK, Langford RP, Causebook R (2006) Assessing the CO2 storage prospectivity of developing economies in APEC—applying methodologies developed in GEODISC to selected sedimentary basins in the Eastern Asian region. In: Gale JJ, Røkke N, Zweigel P, Svenson H (eds) Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies. Elsevier, London, CD-ROM

    Google Scholar 

  • Nirex (2005) The viability of a phased geological repository concept for the long-term management of the UK’s radioactive waste. Nirex Report N/122. United Kingdom Nirex Limited, Harwell

    Google Scholar 

  • NUMO (Nuclear Waste Management Organization of Japan) (2007) The NUMO structured approach to HLW disposal in Japan. Report NUMO-TR-07-02. NUMO, Tokyo

    Google Scholar 

  • Oldenburg CM, Unger AJA (2003) On leakage and seepage from geologic carbon sequestration sites: unsaturated zone attenuation. Vadose Zone J 2:287–296

    Google Scholar 

  • Pacala S (2003) Global constraints on reservoir leakage. In: Gale JJ, Kaya Y (eds) Greenhouse Gas Control Technologies: Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, vol 1. Pergamon, Amsterdam, pp 267–272

    Chapter  Google Scholar 

  • Pacala S, Socolow RH (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972

    Article  Google Scholar 

  • Pearce JM, Czernichowski-Lauriol I, Lombardi S, Brune S, Nador A, Baker J, Pauwels H, Hatziyannis G, Beaubien S, Faber E (2004) A review of natural CO2 accumulations in Europe as analogues for geological sequestration. In: Baines SJ, Worden RH (eds) Geological Storage of Carbon Dioxide, vol 233, Geological society special publication. Geological Society of London, London, pp 29–41

    Google Scholar 

  • Perkins EH, Czernichowski-Lauriol I, Azaroual M, Durst P (2005) Long term predictions of CO2 storage by mineral and solubility trapping in the Weyburn Midale reservoir. In: Wilson M, Morris T, Gale JJ, Thambimuthu K (eds) Greenhouse Gas Control Technologies: Proceedings of the 7th Interna­tional Conference on Greenhouse Gas Technologies, vol 2. Elsevier, London, pp 2093–2101

    Google Scholar 

  • Pitkänen P, Partamies S, Lahdenperä A-M, Lehtinen A, Ahokas T, Hirvonen H, Hatanpää E (2007) Results of monitoring at Olkiluoto in 2006: hydrogeochemistry. Working Report 2007-51. Posiva Oy, Olkiluoto

    Google Scholar 

  • Posiva (2008) Safety case plan 2008. Report POSIVA 2008-05. Posiva Oy, Olkiluoto

    Google Scholar 

  • Posiva (2009) Olkiluoto site description 2008. Report POSIVA 2009-01. Posiva Oy, Olkiluoto

    Google Scholar 

  • Pruess K (2004) Numerical simulation of CO2 leakage from a geologic disposal reservoir, including transitions from super- to subcritical conditions, and boiling of liquid CO2. SPE J 9(2):237–248

    Google Scholar 

  • Pruess K (2005) Numerical studies of fluid leakage from a geologic disposal reservoir for CO2 show self-limiting feedback between fluid flow and heat transfer. Geophys Res Lett 32:L14404

    Article  Google Scholar 

  • Reeves SR (2003) Coal-Seq project update: field studies of ECBM recovery/CO2 sequestration in coal seams. In: Gale JJ, Kaya Y (eds) Greenhouse Gas Control Technologies: Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, vol 1. Pergamon, Amsterdam, pp 557–562

    Chapter  Google Scholar 

  • Reiner DM, Nuttall WJ (2011) Public acceptance of geological disposal of carbon dioxide and radioactive waste: similarities and differences. In this volume

    Google Scholar 

  • Riddiford FA, Tourqui A, Bishop CD, Taylor B, Smith M (2003) A cleaner development: the In Salah gas project, Algeria. In: Gale JJ, Kaya Y (eds) Greenhouse Gas Control Technologies: Proceedings of the 6th International Conference on Greenhouse Gas Control, vol 1. Pergamon, Amsterdam, pp 601–606

    Google Scholar 

  • Rodwell WR, Norris S, Mäntynen M, Vieno T (2003) A thematic network on gas issues in safety assessment of deep repositories for radioactive waste (GASNET). Report EUR 20620. European Commission, Luxembourg

    Google Scholar 

  • Savage D (ed) (1995) The Scientific and Regulatory Basis for the Geological Disposal of Radioactive Waste. Wiley, Chichester

    Google Scholar 

  • Scherer GW, Celia MA, Prévost J-H, Bachu S, Bruant R, Duguid A, Fuller R, Gasda SE, Radonjic M, Vichit-Vadakan W (2005) Leakage of CO2 through abandoned wells: role of corrosion of cement. In: Benson SM (ed) Carbon Dioxide Capture for Storage in deep Geologic Formations—Results from the CO2 Capture Project, vol 2, Geologic storage of carbon dioxide with monitoring and verification. Elsevier, London, pp 827–848

    Chapter  Google Scholar 

  • Shi J-Q, Durucan S, Fujioka M (2008) A reservoir simulation study of CO2 injection and N2 flooding at the Ishikari coalfield CO2 storage pilot project, Japan. Int J Greenhouse Gas Control 2(1):47–57

    Article  Google Scholar 

  • Shipton ZK, Evans JP, Dockrill B, Heath J, Williams A, Kirchner D, Kolesar PT (2005) Natural leaking CO2-charged systems as analogs for failed geologic storage reservoirs. In: Benson SM (ed) Carbon Dioxide Capture for Storage in Deep Geologic Formations—Results from the CO2 Capture Project, vol 2, Geologic storage of carbon dioxide with monitoring and verification. Elsevier, London, pp 699–712

    Chapter  Google Scholar 

  • Socolow RH (2005) Can we bury global warming? Sci Am 293(1):49–55

    Article  Google Scholar 

  • Stevens SH (2005) Natural CO2 fields as analogs for geologic CO2 storage. In: Benson SM (ed) Carbon Dioxide Capture for Storage in Deep Geologic Formations—Results from the CO2 Capture Project, vol 2, Geologic storage of carbon dioxide with monitoring and verification. Elsevier, London, pp 687–697

    Chapter  Google Scholar 

  • Torp TA, Gale JJ (2003) Demonstrating storage of CO2 in geological reservoirs: the Sleipner and SACS projects. In: Gale JJ, Kaya Y (eds) Greenhouse gas control technologies: proceedings of the 6th International Conference on Greenhouse Gas Control, vol 1. Pergamon, Amsterdam, pp 311–316

    Chapter  Google Scholar 

  • van Bergen F, Pagnier H, Krzystolik P (2006) Field experiment of enhanced coalbed methane-CO2 in the Upper Silesian basin of Poland. Environ Geosci 13(3):210–224

    Google Scholar 

  • van der Meer LHG, Hartman J, Geel C, Kreft EE (2005) Re-injecting CO2 into an offshore gas reservoir at a depth of nearly 4000 metres subsea. In: Rubin ES, Keith DW, Gilboy CF (eds) Greenhouse Gas Control Technologies: Proceedings of the 7th International Conference on Greenhouse Gas Control, vol 1. Elsevier, London, pp 521–530

    Google Scholar 

  • Vankerckhoven P, Mitchel K (1998) Radioactive waste categories: Current position (98) in the EU member states and in the Baltic and Central European countries. Report EUR 18324. European Commission, Luxembourg

    Google Scholar 

  • SKB (Svensk Kärnbränslehantering AB—Swedish Nuclear Fuel and Waste Management Company) (2004) RD&D-Programme 2004. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, including social science research. SKB Technical Report TR-04-21. Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • Watson TL, Bachu S (2008) Identification of wells with high CO2-leakage potential in mature oil fields developed for CO2-enhanced oil recovery. Paper SPE 112924. SPE oil recovery symposium, Tulsa, OK, 19–23 Apr

    Google Scholar 

  • Watson TL, Bachu S (2009) Evaluation of the potential for gas and CO2 leakage along wellbores. Paper SPE 106817, SPE Drilling and Completion, 24(1):115–126

    Google Scholar 

  • WCED (World Commission on Environment and Development) (1987) Our Common Future. Oxford University Press, Oxford

    Google Scholar 

  • West JM, Shaw RP, Pearce JM (2011) Environmental issues in the geological disposal of carbon dioxide and radioactive waste. In this volume

    Google Scholar 

  • Wilson EJ, Bergan S (2011) Managing liability: comparing radioactive waste disposal and carbon dioxide storage. In this volume

    Google Scholar 

  • Wilson M, Monea M (eds) (2004) IEA GHG Weyburn monitoring and storage project: summary report 2000–2004. In: Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, vol III. Petroleum Technology Research Center, Regina

    Google Scholar 

  • Wong S, Law D, Deng X, Robinson J, Kadatz B, Gunter WD, Jianping Y, Sanli F, Zhiqiang F (2007) Enhanced coalbed methane and CO2 storage in anthracitic coals—Micro-pilot test at South Qinshui, Shanxi, China. In: Gale J, Bolland O (eds) 8th International Conference on Greenhouse Gas Control Technologies—GHGT-8. Int J Greenhouse Gas Control 1(2):215–222

    Google Scholar 

  • Xu T, Apps JA, Pruess K (2003) Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep arenaceous formations. J Geophys Res 108(B2):2071–2084

    Article  Google Scholar 

  • Yamaguchi S, Ohga K, Fujioka M, Nako M, Muto S (2008) Field experiment of Japan CO2 geosequestration in coal seams project (JCOP). In: Gale JJ, Røkke N, Zweigel P, Svenson H (eds) Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies. Elsevier, London, CD-ROM

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Bachu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bachu, S., McEwen, T. (2011). Geological Media and Factors for the Long-Term Emplacement and Isolation of Carbon Dioxide and Radioactive Waste. In: Toth, F. (eds) Geological Disposal of Carbon Dioxide and Radioactive Waste: A Comparative Assessment. Advances in Global Change Research, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8712-6_2

Download citation

Publish with us

Policies and ethics