Skip to main content

Dynamics and Planet Formation in/Around Binaries

  • Chapter
  • First Online:
Planets in Binary Star Systems

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 366))

Abstract

The extent to which planetesimal accretion is affected by the perturbing presence of a companion star is an important issue in the formation of planets in and around binary systems. In this chapter, we review this issue by concentrating on one crucial parameter: the distribution of encounter velocities within the planetesimal swarm. The evolution of this parameter is numerically explored accounting for the secular perturbations of the binary and the friction due to the very likely presence of gas in the disk. Maps of the average encounter velocity ⟨Δv⟩ between different size planetesimals are presented for a total of 120 stellar dynamical configurations obtained by different combinations of the binary semimajor axis a b and eccentricity e b . According to the different values of ⟨Δv⟩, 3 different planetesimal accumulation modes are identified: 1) in regions where ⟨Δv⟩ is comparable to that derived for planetesimal swarms around single-stars, “standard” accretion is likely, eventually via runaway growth, 2) in regions where ⟨Δv⟩ is larger than v ero , the threshold velocity above which all impacts are eroding, no accretion is possible and planet growth is stopped, 3) in between these two extremes, there is a large fraction of binary configurations where the increase in ⟨Δv⟩ is still below the erosion threshold. Planetesimal accumulation can still occur but it possibly proceeds at a slower rate than in the single-star case, following the so-called type II runaway growth mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our gas-drag model is a simplified one where the gas disk is assumed to be fully axisymmetric and follows a classical (Hayashi 1981) power law distribution. It is however more than likely that in reality the gas disk should depart from this simplified view because it would also “feel” the companion star’s perturbations. Several numerical studies have investigated the complex behavior of gaseous disks in binary systems. They all show that pronounced spiral structures rapidly form within the disk (e.g., Artymowicz and Lubow 1994; Savonije et al. 1994) and that gas streamlines exhibit radial velocities. To follow the dynamical behavior of planetesimals in such non-axisymmetric gas profiles would require a study of the coupled evolution of both gas and planetesimal populations, which have to rely on hydrodynamic-code modeling of the gas in addition to N-body type simulations for the planetesimals. Such an all-encompassing gas + planetesimals modeling is clearly the next step in binary disk studies and have already been started by several teams. It is interesting to note that preliminary results seem to show that planetesimal behaviors in systems with “realistic” gas disk modeling do not seem to drastically depart from the behavior in the axisymmetric case. There is in particular no phase alignment between eccentric planetesimal orbits and gas streamlines, so that gas friction on planetesimals is still very high (S.J. Paardekooper, private communication).

References

  • Adachi, I., Hayashi, C., Nakagawa, K., 1976, The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula, Prog. Theor. Phys., 56, 1756

    Article  ADS  Google Scholar 

  • Alibert, Y., Mordasini, C., Benz, W., 2004, Migration and giant planet formation, A&A, 417, L25–L28

    Article  ADS  Google Scholar 

  • Artymowicz, P., Lubow, S. H., 1994, Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes, ApJ, 421, 651

    Google Scholar 

  • Barge, P., Pellat, R., 1993, Mass spectrum and velocity dispersions during planetesimal accumulation, Icarus, 104, 79

    Article  ADS  Google Scholar 

  • Benz, W., Asphaug, E., 1999, Catastrophic disruptions revisited, Icarus, 142, 5

    Article  ADS  Google Scholar 

  • Bodenheimer, P., Lin, D. N. C., 2002, Implications of extrasolar planets for understanding planet formation, Annual Review of Earth and Planetary Sciences, 30, 113–148

    Article  ADS  Google Scholar 

  • Boss, A. P., 1997, Giant planet formation by gravitational instability, Science, 276, 1836–1839

    Article  ADS  Google Scholar 

  • Boss, A. P., 2007, Testing disk instability models for giant planet formation, ApJ, 661, L73–L76

    Article  ADS  Google Scholar 

  • Boss, A. P., 2004, Convective cooling of protoplanetary disks and rapid giant planet formation, ApJ, 610, 456–463

    Article  ADS  Google Scholar 

  • Boss, A. P., 2006, Gas giant protoplanets formed by disk instability in binary star systems, ApJ, 641, 1148–1161

    Article  ADS  Google Scholar 

  • Chambers, J. E., Wetherill, G. W., 1998, Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions, Icarus, 136, 304–327

    Article  ADS  Google Scholar 

  • Chambers J.E., Wetherill G.W., Boss A.P., 1996, The stability of multi-planet systems, Icarus, 119, 261

    Article  ADS  Google Scholar 

  • Chen, C. H., Kamp, I., 2004, ApJ, 602, 985–992

    Article  ADS  Google Scholar 

  • Cuzzi, J., Weidenschilling, S., Particle-gas dynamics and primary accretion, 2006, in Meteorites and the Early Solar System II, D. S. Lauretta and H. Y. McSween Jr. (eds.), University of Arizona Press, Tucson, 943 pp., p. 353–381

    Google Scholar 

  • Desidera, S., Barbieri, M., 2007, A&A, 462, 345–353

    Article  ADS  Google Scholar 

  • Dominik, C., Tielens, A., The physics of dust coagulation and the structure of dust aggregates in space, 1997, ApJ, 480, 647

    Google Scholar 

  • Dullemond, C., Dominik, C., Dust coagulation in protoplanetary disks: A rapid depletion of small grains, 2005, A&A, 434, 971

    Google Scholar 

  • Duquennoy, A., Mayor, M., 1991, Multiplicity among solar-type stars in the solar neighborhood. II-Distribution of the orbital elements in an unbiased sample, A&A, 248, 485

    Google Scholar 

  • Eggenberger, A., Udry, S., Mayor, M., 2003, in ASP Conf. Ser. 294, Scientific Frontiers in Research on Extrasolar Planets, ed. D. Denning & S. Seager, 43

    Google Scholar 

  • Goldreich, P., Ward, W., 1973, The formation of planetesimals, ApJ, 183, 1051

    Article  ADS  Google Scholar 

  • Greenberg, R., Hartmann, W. K., Chapman, C. R., Wacker, J. F., 1978, Planetesimals to planets – Numerical simulation of collisional evolution, Icarus, 35, 1

    Article  ADS  Google Scholar 

  • Guillot, T., 1999, A comparison of the interiors of Jupiter and Saturn, Planetary and Space Science, 47, 1183–1200

    Article  ADS  Google Scholar 

  • Guillot, T., 2004, The interiors of giant planets: Models and Outstanding Questions, Annual Review of Earth and Planetary Sciences, 33, 493–530

    Article  ADS  Google Scholar 

  • Haisch, K. E., Lada, E. A., Lada, C. J., 2001, ApJ, 553, L153–L156

    Article  ADS  Google Scholar 

  • Hale, A., 1994, AJ, 107, 306

    Article  ADS  Google Scholar 

  • Hatzes, A. P., Cochran, W. D., Endl, M., McArthur, B., Paulson, D. B., Walker, G. A. H., Campbell, B., Yang, S., 2003, A planetary companion to gamma Cephei A, ApJ, 599, 1383–1394

    Article  ADS  Google Scholar 

  • Hayashi, C., 1981, Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula, PthPS, 70, 35

    ADS  Google Scholar 

  • Heppenheimer, T., 1978, On the formation of planets in binary star systems, A&A, 65, 421

    ADS  Google Scholar 

  • Holman, M. J., Wiegert, P. A., 1999, Long-term stability of planets in binary systems, AJ, 117, 621–628

    Article  ADS  Google Scholar 

  • Holsapple, K. A., 1994, Catastrophic disruptions and cratering of solar system bodies: A review and new results, P&SS, 42, 1067

    Article  ADS  Google Scholar 

  • Johansen, A., Oishi, J. S., Low, M. M., Klahr, H., Henning, T., Youdin, A., 2007, Rapid planetesimal formation in turbulent circumstellar disks, Nature, 448, 1022–1025

    Article  ADS  Google Scholar 

  • Johansen, A., Youdin, A., 2007, Protoplanetary disk turbulence driven by the streaming instability: Nonlinear saturation and particle concentration, ApJ, 662, 627–641

    Article  ADS  Google Scholar 

  • Johansen, A., Klahr, H., Henning, T., 2006, Gravoturbulent formation of planetesimals, ApJ, 636, 1121–1134

    Article  ADS  Google Scholar 

  • Kary, D. M., Lissauer, J. J., Greenzweig, Y., 1993, Nebular gas drag and planetary accretion, Icarus, 106, 288–307

    Article  ADS  Google Scholar 

  • Kokubo, E., Ida, S., 1998, Oligarchic growth of protoplanets, Icarus, 131, 171

    Article  ADS  Google Scholar 

  • Kokubo, E., Ida, S., 2000, Formation of protoplanets from planetesimals in the solar nebula, Icarus, 143, 15

    Article  ADS  Google Scholar 

  • Kortenkamp S. J., Wetherill G. W., 2000a, Terrestrial planet and asteroid formation in the presence of giant planets I. Relative velocities of planetesimals subject to Jupiter and Saturn perturbations, Icarus, 143, 60

    Google Scholar 

  • Kortenkamp S. J., Wetherill G. W., 2000b, Formation of the asteroid belt, Lunar Plan. Sci. Conf., 31, abstract #1813

    Google Scholar 

  • Kortenkamp S. J., Kokubo E., Weidenschilling S.J., 2000, Formation of planetary embryos, in Origin of the Earth and Moon, R. M. Canup and K. Righter (eds.), University of Arizona Press, Tucson, pp. 85–100

    Google Scholar 

  • Kortenkamp, S., Wetherill, G., Inaba, S., 2001, Runaway growth of planetary embryos facilitated by massive bodies in a protoplanetary disk, Science, 293, 1127

    Article  ADS  Google Scholar 

  • Kortenkamp S. J., Weidenschilling S. J., Marzari F., 2006, A new code for modeling planetesimal accretion in protoplanetary disks perturbed by massive companions 38th DPS Meeting, Pasadena, CA, abstract #63.03

    Google Scholar 

  • Lagrange, A.-M., Beust, H., Udry, S., Chauvin, G., Mayor, M., 2006, New constrains on Gliese 86 B - VLT near infrared coronographic imaging survey of planetary hosts, A&A, 459, 955

    Article  ADS  Google Scholar 

  • Lissauer, J.J., 1993, Planet formation, ARA&A, 31, 129

    Article  ADS  Google Scholar 

  • Lissauer J., Stewart G., 1993, Growth of planets from planetesimals, in Protostars and Planets III, the Univ. of Arizona Press, Tucson, 1061

    Google Scholar 

  • Marzari, F., Davis, D., Vanzani, V., 1995, Collisional evolution of asteroid families, Icarus, 113, 168

    Article  ADS  Google Scholar 

  • Marzari F., Scholl H., 1998, Capture of Trojans by a growing proto-jupiter, Icarus, 131, 41

    Article  ADS  Google Scholar 

  • Marzari F., Scholl H., 2000, Planetesimal accretion in binary star systems, ApJ, 543, 328

    Article  ADS  Google Scholar 

  • Marzari, F., Barbieri, M., 2007a, A&A, 467, 347

    Article  ADS  Google Scholar 

  • Marzari, F., Barbieri, M., 2007b, A&A, 472, 643

    Article  ADS  Google Scholar 

  • Marzari, F., Thébault, P., Scholl, H., 2009, A&A, 507, 505

    Article  ADS  Google Scholar 

  • Mayer L., Quinn T., Wadsley J., Stadel J., 2002, Formation of giant planets by fragmentation of protoplanetary disks, Science, 298, 1756

    Article  ADS  Google Scholar 

  • Mugrauer, M., Neuhauser, R., 2005, Gl 86B: A white dwarf orbits an exoplanet host star, MNRAS, 361, L15

    ADS  Google Scholar 

  • Nelson, A., 2000, Planet formation is unlikely in equal-mass binary systems with a ≃ 50 AU, ApJ, 537, 65

    Article  ADS  Google Scholar 

  • Neuhäuser, R., Mugrauer, M., Fukagawa, M., Torres G., Schmidt, T., 2007, Direct detection of exoplanet host star companion gamma Cep B and revised masses for both stars and the sub-stellar object, A&A, 462, 777

    Article  ADS  Google Scholar 

  • Öpik E. J., 1951, Collision probabilities with the planets and the distribution of interplanetary matter, Proc. Irish Acad., 54, 165

    MATH  Google Scholar 

  • Papaloizou, J., Lin, D. N. C., 1984, On the tidal interaction between protoplanets and the primordial solar nebula. I – Linear calculation of the role of angular momentum exchange, ApJ, 285, 818–834

    Google Scholar 

  • Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., Greenzweig, Y., 1996, Formation of the giant planets by concurrent accretion of solids and gas, Icarus, 124, 62–85

    Article  ADS  Google Scholar 

  • Pourbaix, D., Neuforge-Verheecke, C., Noels, A., 1999, Revised masses of alpha Centauri, A&A, 344, 172–176

    ADS  Google Scholar 

  • Rafikov, R., 2003, The growth of planetary embryos: Orderly, runaway, or oligarchic?, AJ, 125, 942

    Article  ADS  Google Scholar 

  • Rafikov, R., 2004, Fast Accretion of Small Planetesimals by Protoplanetary Cores, AJ, 128, 1348

    Article  ADS  Google Scholar 

  • Raghavan, D., Henry, T. J., Mason, B. D., Subasavage, J. P., Jao, W.-C., Beaulieu, T. D., Hambly, N.C., 2006, Two suns in the sky: Stellar multiplicity in exoplanet systems, ApJ, 646, 523

    Article  ADS  Google Scholar 

  • Rice, W. K. M., Armitage, P. J., 2003, On the formation timescale and core masses of gas giant planets, ApJ, 598, L55–L58

    Article  ADS  Google Scholar 

  • Safronov, V. S., 1969, Evolution of the protoplanetary cloud and formation of the earth and the planets. Israel program for scientific translation, TT-F 677

    Google Scholar 

  • Santos, N. C., Israelian, G., Mayor, M., 2004, Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation, A&A, 415, 1153–1166

    Google Scholar 

  • Sato, B., Fischer, D. A., Henry, G. W., Laughlin, G., Butler, R. P., Marcy, G. W., Vogt, S. S., Bodenheimer, P., Ida, S., Toyota, E., Wolf, A., Valenti, J. A., Boyd, L. J., Johnson, J. A., Wright, J. T., Ammons, M., Robinson, S., Strader, J., McCarthy, C., Tah, K. L., Minniti, D., 2005, The N2K consortium. II. A transiting hot saturn around HD 149026 with a large dense core, ApJ, 633, 465–473

    Google Scholar 

  • Savonije, G. J., Papaloizou, J. C. B., Lin, D., 1994, On tidally induced shocks in accretion disks in close binary systems, MNRAS, 268, 13

    ADS  Google Scholar 

  • Stewart G. R., Kaula W. M., 1980, Gravitational kinetic theory for planetesimals, Icarus, 44, 154

    Article  ADS  Google Scholar 

  • Strom, S. E., Edwards, S., Skrutskie, M. F., Evolutionary time scales for circumstellar disks associated with intermediate- and solar-type stars. In Protostars and Planets III, University of Arizona Press, Tucson, pp. 837–866

    Google Scholar 

  • Thébault, P., Marzari, F., Scholl, H., 2002, Terrestrial planet formation in exoplanetary systems with a giant planet on an external orbit, A&A, 384, 594

    Article  ADS  Google Scholar 

  • Thébault, P., Brahic, A., 1998, Dynamical influence of a proto-Jupiter on a disc of colliding planetesimals, P&SS, 47, 233

    Article  ADS  Google Scholar 

  • Thébault, P., Beust, H., 2001, Falling evaporating bodies in the 0̆3b2 Pictoris system. Resonance refilling and long term duration of the phenomenon, A&A, 376, 621

    Google Scholar 

  • Thébault P., Augereau, J.-C., Beust, H., 2003, Dust production from collisions in extrasolar planetary systems. The inner beta Pictoris disc, A&A, 408, 775

    Google Scholar 

  • Thébault, P., Marzari, F., Scholl, H., Turrini, D., Barbieri, M., 2004, Planetary formation in the γ Cephei system, A&A, 427, 1097

    Article  ADS  Google Scholar 

  • Thébault, P., Marzari, F., Scholl, H., 2006, Relative velocities among accreting planetesimals in binary systems: The circumprimary case, Icarus, 183, 193

    Article  ADS  Google Scholar 

  • Thebault, P., Marzari, F., Scholl, H., 2008, MNRAS, 388, 1528

    Article  ADS  Google Scholar 

  • Thebault, P., Marzari, F., Scholl, H., 2009, MNRAS, 393, L21–L25

    Article  ADS  Google Scholar 

  • Torres, G., 2007, The planet host star γ Cephei: Physical properties, the binary orbit, and the mass of the substellar companion, ApJ, 654, 1095

    Article  ADS  Google Scholar 

  • Weidenschilling, S., 1977, The distribution of mass in the planetary system and solar nebula, Astrophysics and Space Science, 51, 153–158

    Article  ADS  Google Scholar 

  • Weidenschilling, S., 1980, Dust to planetesimals – Settling and coagulation in the solar nebula, Icarus, 44, 172

    Article  ADS  Google Scholar 

  • Weidenschilling, S. J., 2000, Formation of planetesimals and accretion of the terrestrial planets, SSRv, 92, 295

    ADS  Google Scholar 

  • Weidenschilling, S. J., Davis, D. R., 1985, Orbital resonances in the solar nebula – Implications for planetary accretion, Icarus, 62, 16

    Article  ADS  Google Scholar 

  • Weidenschilling S. J., Spaute D., Davis D. R., Marzari F., Ohtsuki K., 1997, Accretional evolution of a planetesimal swarm II: The terrestrial zone, Icarus, 128, 429

    Article  ADS  Google Scholar 

  • Spaute, D., Weidenschilling, S. J., Davis, D. R., Marzari, F., 1991, Accretional evolution of a planetesimal swarm. I - A new simulation, Icarus, 92, 147–164

    Article  Google Scholar 

  • Wetherill, G. W., Stewart, G. R., 1989, Accumulation of a swarm of small planetesimals, Icarus, 77, 330

    Article  ADS  Google Scholar 

  • Wetherill, G. W., Stewart, G. R., 1993, Formation of planetary embryos – Effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination, Icarus, 106, 190

    Article  ADS  Google Scholar 

  • Wetherill, G. W., Inaba, S., 2000, Planetary accumulation with a continuous supply of planetesimals, SSRv, 92, 311

    ADS  Google Scholar 

  • Whitmire, D., Matese, J., Criswell, L., 1998, Habitable planet formation in binary star systems, Icarus, 132, 196

    Article  ADS  Google Scholar 

  • Wuchterl, G., Guillot, T., Lissauer, J. J., 2000, Giant planet formation, in Protostars and Planets IV, V. Mannings, A. P. Boss, S. S. Russell, (eds.), University of Arizona Press, Tucson, p. 1081

    Google Scholar 

  • Xie, J.-W., Zhou J.-L., 2008, ApJ, 686, 570

    Article  ADS  Google Scholar 

  • Youdin, A., Shu, F., 2002, Planetesimal formation by gravitational instability, ApJ, 580, 494

    Article  ADS  Google Scholar 

  • Youdin, A., Chiang, E., 2004, Particle pileups and planetesimal formation, ApJ, 601, 1109

    Article  ADS  Google Scholar 

  • Zucker, S., Mazeh, T., Santos, N. C., Udry, S., Mayor, M., 2004, Multi-order TODCOR: Application to observations taken with the CORALIE echelle spectrograph. II. A planet in the system HD 41004, 2004, A&A, 426, 695

    Google Scholar 

Download references

Acnowledgments

S. Kortenkamp acknowledges support from NASA for some of this work under grants NNG04GP56G and NNG04GI14G.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francesco Marzari or Philippe Thébault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Marzari, F., Thébault, P., Kortenkamp, S., Scholl, H. (2010). Dynamics and Planet Formation in/Around Binaries. In: Haghighipour, N. (eds) Planets in Binary Star Systems. Astrophysics and Space Science Library, vol 366. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8687-7_7

Download citation

Publish with us

Policies and ethics