Skip to main content

Observational Techniques for Detecting Planets in Binary Systems

  • Chapter
  • First Online:

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 366))

Abstract

Searches for planets in close binary systems explore the degree to which stellar multiplicity inhibits or promotes planet formation. There is a degeneracy between planet formation models when only systems with single stars are studied – several mechanisms appear to be able to produce such a final result. This degeneracy is lifted by searching for planets in binary systems; the resulting detections (or evidence of non-existence) of planets in binaries isolates which models may contribute to how planets form in nature. Some models in which giant planet formation occurs over large amounts of time (e.g., the core-accretion scenario) predict that an extra-turbulent environment, such as those around binary stars, will disrupt planet formation. If the timescale is short (as in the gravitational instability theory), the process may continue, or even be enhanced due to additional instabilities in the planet-forming disks. It may be that multiple mechanisms contribute to giant planet formation in nature. Establishing the rate at which giant planets exist in binaries will distinguish the relative frequencies at which different processes contribute.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • E. Agol, J. Steffen, R. Sari, and W. Clarkson. On detecting terrestrial planets with timing of giant planet transits. MNRAS, 359: 567–579, May 2005. doi: 10.1111/j. 1365-2966.2005.08922.x.

    Article  ADS  Google Scholar 

  • J. H. Applegate. A mechanism for orbital period modulation in close binaries. ApJ, 385: 621–629, February 1992.

    Article  ADS  Google Scholar 

  • D. Benest. Planetary orbits in the elliptic restricted problem. I – The Alpha Centauri system. A&A, 206: 143–146, November 1988.

    ADS  Google Scholar 

  • D. Benest. Planetary orbits in the elliptic restricted problem. II – The Sirius system. A&A, 223: 361–364, October 1989.

    ADS  MATH  Google Scholar 

  • D. Benest. Stable planetary orbits around one component in nearby binary stars. II. Celestial Mechanics and Dynamical Astronomy, 56: 45–50, June 1993.

    Article  ADS  Google Scholar 

  • D. Benest. Planetary orbits in the elliptic restricted problem. III. The η Coronae Borealis system. A&A, 314: 983–988, October 1996.

    ADS  Google Scholar 

  • D. Benest. Planetary orbits in the elliptic restricted problem. V. The ADS 11060 system. A&A, 400: 1103–1111, March 2003.

    Article  ADS  Google Scholar 

  • A. P. Boss. Possible rapid gas giant planet formation in the solar nebula and other protoplanetary disks. APJ, 536: L101–L104, June 2000. doi: 10.1086/312737.

    Article  ADS  Google Scholar 

  • R. A. Broucke. Stable orbits of planets of a binary star system in the three-dimensional restricted problem. Celestial Mechanics and Dynamical Astronomy, 81: 321–341, December 2001.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • R. P. Butler, G. W. Marcy, E. Williams, C. McCarthy, P. Dosanjh, and S. S. Vogt. Attaining Doppler precision of 3 M s-1. PASP, 108: 500–509, June 1996.

    Article  ADS  Google Scholar 

  • B. Campbell, G. A. H. Walker, and S. Yang. A search for substellar companions to solar-type stars. ApJ, 331: 902–921, August 1988. doi: 10.1086/166608.

    Article  ADS  Google Scholar 

  • G. Chauvin, A. Lagrange, S. Udry, T. Fusco, F. Galland, D. Naef, J. Beuzit, and M. Mayor. Probing long-period companions to planetary hosts. VLT and CFHT near infrared coronographic imaging surveys. A&A, 456:1165–1172, September 2006. doi: 10.1051/0004-6361:20054709.

    Article  ADS  Google Scholar 

  • M. M. Colavita. Measurement of the atmospheric limit to narrow angle interferometric astrometry using the Mark-III Stellar interferometer. A&A, 283: 1027–1036, March 1994.

    ADS  Google Scholar 

  • M. M. Colavita. Fringe visibility estimators for the Palomar testbed interferometer. PASP, 111: 111–117, January 1999. doi: 10.1086/316302.

    Article  ADS  Google Scholar 

  • M. M. Colavita, J. K. Wallace, B. E. Hines, Y. Gursel, F. Malbet, D. L. Palmer, X. P. Pan, M. Shao, J. W. Yu, A. F. Boden, P. J. Dumont, J. Gubler, C. D. Koresko, S. R. Kulkarni, B. F. Lane, D. W. Mobley, and G. T. van Belle. The Palomar testbed interferometer. ApJ, 510: 505–521, January 1999.

    Article  ADS  Google Scholar 

  • S. Desidera, R. Gratton, R. Claudi, M. Barbieri, G. Bonanno, M. Bonavita, R. Cosentino, M. Endl, S. Lucatello, A. F. Martinez Fiorenzano, F. Marzari, and S. Scuderi. Searching for planets around stars in wide binaries, pages 119–126, February 2006.

    Google Scholar 

  • L. R. Doyle, H. Deeg, J. M. Jenkins, J. Schneider, Z. Ninkov, R. Stone, H. Gotzger, B. Friedman, J. E. Blue, and M. F. Doyle. Detectability of jupiter-to-brown-dwarf-mass companions around small eclipsing binary systems. In ASP Conf. Ser. 134: Brown Dwarfs and Extrasolar Planets, pages 224–231, 1998.

    Google Scholar 

  • R. Dvorak. Planetary orbits in double star systems. Oesterreichische Akademie Wissenschaften Mathematisch naturwissenschaftliche Klasse Sitzungsberichte Abteilung, 191: 423–437, 1982.

    MathSciNet  ADS  MATH  Google Scholar 

  • A. Eggenberger, S. Udry, T. Mazeh, Y. Segal, and M. Mayor. No evidence of a hot Jupiter around HD 188753 A. A&A, 466: 1179–1183, May 2007. doi: 10.1051/0004-6361: 20066835.

    Article  ADS  Google Scholar 

  • H. Frieboes-Conde and T. Herczeg. Period variations of fourteen eclipsing binaries with possible light-time effect. A&AS, 12: 1–78, October 1973.

    ADS  Google Scholar 

  • W. I. Hartkopf, B. D. Mason, and C. E. Worley. Sixth catalog of orbits of visual binary stars. http://www.ad.usno.navy.mil/wds/orb6/orb6.html, 2001.

  • A. P. Hatzes and G. Wuchterl. Astronomy: Giant planet seeks nursery place. nature, 436: 182–183, July 2005. doi: 10.1038/436182a.

    Article  ADS  Google Scholar 

  • A. P. Hatzes, W. D. Cochran, M. Endl, B. McArthur, D. B. Paulson, G. A. H. Walker, B. Campbell, and S. Yang. A Planetary Companion to γ Cephei A. ApJ, 599: 1383–1394, December 2003. doi: 10.1086/379281.

    Article  ADS  Google Scholar 

  • M. J. Holman and N. W. Murray. The use of transit timing to detect terrestrial-mass extrasolar planets. Science, 307: 1288–1291, February 2005. doi: 10.1126/science. 1107822.

    Article  ADS  Google Scholar 

  • M. J. Holman and P. A. Wiegert. Long-term stability of planets in binary systems. AJ, 117: 621–628, January 1999.

    Article  ADS  Google Scholar 

  • J. B. Irwin. The determination of a light-time orbit. ApJ, 116: 211–217, July 1952.

    Article  ADS  Google Scholar 

  • H. Jang-Condell. Constraints on the formation of the planet around HD188753A. ApJ, 654: 641–649, January 2007. doi: 10.1086/509494.

    Article  ADS  Google Scholar 

  • M. Konacki. Precision radial velocities of double-lined spectroscopic binaries with an iodine absorption cell. ApJ, 626: 431–438, June 2005a. doi: 10.1086/429880.

    Article  ADS  Google Scholar 

  • M. Konacki. An extrasolar giant planet in a close triple-star system. nature, 436: 230–233, July 2005a. doi: 10.1038/nature03856.

    Article  ADS  Google Scholar 

  • M. Konacki. Precision radial velocities of double-lined spectroscopic binaries with an iodine absorption cell. ApJ, 626:431–438, June 2005b.

    Article  ADS  Google Scholar 

  • M. Konacki. Precision radial velocities of double-lined binary stars and the spectroscopic follow-up of circumbinary transiting planet candidates. 253: 141–147, February 2009. doi: 10.1017/S1743921308026331.

    Google Scholar 

  • R. L. Kurucz. The Kurucz Smithsonian atomic and molecular database. pages 205– +, 1995.

    Google Scholar 

  • A. Lagrange, H. Beust, S. Udry, G. Chauvin, and M. Mayor. New constrains on Gliese 86 B. A&A, 459:955–963, December 2006. doi: 10.1051/0004-6361:20054710.

    Article  ADS  Google Scholar 

  • B. F. Lane and M. W. Muterspaugh. Differential astrometry of subarcsecond scale binaries at the Palomar testbed interferometer. ApJ, 601: 1129–1135, February 2004.

    Article  ADS  Google Scholar 

  • B. F. Lane, M. M. Colavita, A. F. Boden, and P. R. Lawson. Palomar testbed interferometer: update. In Proc. SPIE Vol. 4006, p. 452–458, Interferometry in Optical Astronomy, Pierre J. Lena; Andreas Quirrenbach; Eds., pages 452–458, July 2000.

    Google Scholar 

  • J. Laskar, F. Joutel, and P. Robutel. Stabilization of the earth’s obliquity by the moon. nature, 361: 615–617, February 1993.

    Article  ADS  Google Scholar 

  • P. R. Lawson, editor. Principles of Long Baseline Stellar Interferometry, 2000.

    Google Scholar 

  • J. J. Lissauer. Planet formation. ARA&A, 31: 129–174, 1993. doi: 10.1146/annurev.aa.31. 090193.001021.

    Article  ADS  Google Scholar 

  • G. W. Marcy and R. P. Butler. Precision radial velocities with an iodine absorption cell. PASP, 104: 270–277, April 1992.

    Article  ADS  Google Scholar 

  • M. Mugrauer and R. Neuhäuser. Gl86B: a white dwarf orbits an exoplanet host star. MNRAS, 361: L15–L19, July 2005. doi: 10.1111/j.1745-3933.2005.00055.x.

    ADS  Google Scholar 

  • M. W. Muterspaugh, B. F. Lane, S. R. Kulkarni, B. F. Burke, M. M. Colavita, and M. Shao. Limits to tertiary astrometric companions in binary systems. ApJ, 653, 1469–1479, November 2006. doi: 10.1086/508743.

    Article  ADS  Google Scholar 

  • A. F. Nelson. Planet formation is unlikely in equal-mass binary systems with A ˜ 50 AU. APJ, 537: L65–L68, July 2000.

    Article  ADS  Google Scholar 

  • J. Norwood and N. Haghighipour. On the stability of υ Andromedae extrasolar planetary system; an S-Type binary-planetary system with more than one planet. BAAS, 34: 892, 2002.

    ADS  Google Scholar 

  • E. Pfahl. Cluster origin of the triple star HD 188753 and its planet. APJ, 635: L89–L92, December 2005. doi: 10.1086/499162.

    Article  ADS  Google Scholar 

  • E. Pfahl and M. Muterspaugh. Impact of stellar dynamics on the frequency of giant planets in close binaries. ApJ, 652: 1694–1697, December 2006. doi: 10.1086/508446.

    Article  ADS  Google Scholar 

  • B. Pichardo, L. S. Sparke, and L. A. Aguilar. Circumstellar and circumbinary discs in eccentric stellar binaries. MNRAS, 359: 521–530, May 2005. doi: 10.1111/j.1365-2966. 2005.08905.x.

    Article  ADS  Google Scholar 

  • E. Pilat-Lohinger and R. Dvorak. Stability of S-type orbits in binaries. Celestial Mechanics and Dynamical Astronomy, 82: 143–153, 2002.

    Article  ADS  MATH  Google Scholar 

  • E. Pilat-Lohinger, B. Funk, and R. Dvorak. Stability limits in double stars. A study of inclined planetary orbits. A&A, 400: 1085–1094, March 2003.

    Article  ADS  Google Scholar 

  • S. F. Portegies Zwart and S. L. W. McMillan. Planets in triple star systems: The case of HD 188753. APJ, 633: L141–L144, November 2005. doi: 10.1086/498302.

    Article  ADS  Google Scholar 

  • D. Queloz, M. Mayor, L. Weber, A. Blécha, M. Burnet, B. Confino, D. Naef, F. Pepe, N. Santos, and S. Udry. The CORALIE survey for southern extra-solar planets. I. A planet orbiting the star Gliese 86. A&A, 354: 99–102, February 2000.

    ADS  Google Scholar 

  • G. Rabl and R. Dvorak. Satellite-type planetary orbits in double stars – A numerical approach. A&A, 191: 385–391, February 1988.

    ADS  Google Scholar 

  • M. Shao and M. M. Colavita. Potential of long-baseline infrared interferometry for narrow-angle astrometry. A&A, 262: 353–358, August 1992.

    ADS  Google Scholar 

  • M. Shao and D. H. Staelin. First fringe measurements with a phase-tracking stellar interferometer. Applied Optics, 19: 1519–1522, May 1980.

    Article  ADS  Google Scholar 

  • M. Shao, T. R. Livermore, D. M. Wolff, J. W. Yu, and M. M. Colavita. An overview of the space interferometry mission, SIM. Bulletin of the American Astronomical Society, 27:1384, December 1995.

    ADS  Google Scholar 

  • P. Thébault, F. Marzari, H. Scholl, D. Turrini, and M. Barbieri. Planetary formation in the γ Cephei system. A&A, 427: 1097–1104, December 2004. doi: 10.1051/0004-6361: 20040514.

    Article  ADS  Google Scholar 

  • P. Thébault, F. Marzari, and H. Scholl. Relative velocities among accreting planetesimals in binary systems: The circumprimary case. Icarus, 183: 193–206, July 2006. doi: 10.1016/j.icarus.2006.01.022.

    Article  ADS  Google Scholar 

  • E. Toyota, Y. Itoh, H. Matsuyama, S. Urakawa, S. Kimura, Y. Oasa, T. Mukai, and B. Sato. Search for extrasolar planets in binary systems. In Protostars and Planets V, eds. B. Reipurth, D. Jewitt & K. Keil, p. 8247, 2005.

    Google Scholar 

  • S. Udry, A. Eggenberger, M. Mayor, T. Mazeh, and S. Zucker. Planets in multiple-star systems:properties and detections. pages 207–214, August 2004.

    Google Scholar 

  • C. A. Watson and V. S. Dhillon. The effect of star-spots on eclipse timings of binary stars. MNRAS, 351: 110–116, June 2004.

    Article  ADS  Google Scholar 

  • J. Woltjer. On a special case of orbit determination in the theory of eclipsing variables. Bulletin of the Astronomical Institutes of the Netherlands, 1: 93–94, June 1922.

    ADS  Google Scholar 

  • A. T. Young. Photometric error analysis. VI. Confirmation of Reiger’s theory of scintillation. AJ, 72: 747–753, August 1967. doi: 10.1086/110303.

    Article  ADS  Google Scholar 

  • S. Zucker and T. Mazeh. Study of spectroscopic binaries with TODCOR. 1: A new two-dimensional correlation algorithm to derive the radial velocities of the two components. ApJ, 420: 806–810, January 1994. doi: 10.1086/173605.

    Article  ADS  Google Scholar 

  • S. Zucker, T. Mazeh, N. C. Santos, S. Udry, and M. Mayor. Multi-order TODCOR: Application to observations taken with the CORALIE echelle spectrograph. II. A planet in the system HD 41004. A&A, 426: 695–698, November 2004. doi: 10.1051/0004-6361: 20040384.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Muterspaugh, M.W., Konacki, M., Lane, B.F., Pfahl, E. (2010). Observational Techniques for Detecting Planets in Binary Systems. In: Haghighipour, N. (eds) Planets in Binary Star Systems. Astrophysics and Space Science Library, vol 366. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8687-7_4

Download citation

Publish with us

Policies and ethics