Skip to main content

Field Radiometry and Ocean Color Remote Sensing

  • Chapter
  • First Online:
Oceanography from Space

Abstract

Since the early 1980s, with the onset of missions for global mapping of marine biomass, accurate in-situ radiometric data has become a pressing need to support satellite ocean color applications. This work presents a brief introduction to in-situ marine optical radiometry through an overview of absolute calibration, measurement methods, uncertainties and application to the validation of satellite ocean color data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aas E (1969) On submarine irradiance measurements. Technical Report 6, Institute of Physical Oceanography, University of Copenhagen, Copenhagen, Denmark

    Google Scholar 

  • Aas E, Højerslev NK (1999) Analysis of underwater radiance observations: apparent optical properties and analytic functions describing the angular radiance distribution. J Geophys Res 104:8015–8024

    Article  Google Scholar 

  • Aas E, Korsbø B (1997) Self-shading effect by radiance meters on upward radiance observed in coastal waters. Limnol Oceanogr 42:968–974

    Article  Google Scholar 

  • Antoine D, Guevel P, Desté JF, Bécu G, Louis F, Scott AJ, Bardey P (2008a) The “BOUSSOLE” Buoy – A new transparent-to-swell taut mooring dedicated to marine optics: design, tests, and performance at sea. J Atmos Oceanic Technol 25:968–989

    Article  Google Scholar 

  • Antoine D, D’Ortenzio F, Hooker SB, Bécu G, Gentili B, Tailliez D, Scott AJ (2008b) Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project). J Geophys Res 113:C07013, doi:10.1029/2007JC004472

    Article  Google Scholar 

  • Atkins WRG, Poole HH (1933) The photo-electric measurement of the penetration of light of various wavelengths into the sea and the physiological bearing of results. Phil Trans Roy Soc Lon (B) 222:129–164

    Article  Google Scholar 

  • Austin RW (1974) The remote sensing of spectral radiance from below the ocean surface. In: Jerlov NG, Nielsen ES (eds.) Optical aspects of oceanography, Academic Press, New York

    Google Scholar 

  • Austin RW (1976) Air-water radiance calibration factor. Technical Memorandum ML – 76 – 004T, Scripps Institution of Oceanography, La Jolla, CA

    Google Scholar 

  • Bailey SW, Hooker SB, Antoine D, Franz B A, Werdell PJ (2008) Sources and assumptions for the vicarious calibration of ocean color satellite observations. Appl Opt 47:2035–2045

    Article  Google Scholar 

  • Bailey SW, Werdell PJ (2006) A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sen Environ 102:12–23

    Article  Google Scholar 

  • Berger F (1958) Uber die ursache des “oberfl¨acheneffekts” bei lichtmessungen unter wasser. Wetter u Leben 10:164–170

    Google Scholar 

  • Berger F (1961) Uber den ”taucheffekt” bei der lichtmessung ber and unter wasser. Arch Meteorol Wien (B) 11:224–240

    Google Scholar 

  • Bulgarelli B, Zibordi G, Berthon JF (2003) Measured and modeled radiometric quantities in coastal waters: towards a closure. Appl Opt 42:5365–5381

    Article  Google Scholar 

  • Carder KL, Steward RG (1985) A remote sensing reflectance model of a red tide dinoflagellate off west florida. Limnol Oceanogr 30:286–298

    Article  Google Scholar 

  • Chang GC, Dickey TD, Mobley CD, Boss E, Pegau S (2003) Toward closure of upwelling radiance in coastal waters. Appl Opt 42:1574–1582

    Article  Google Scholar 

  • Clark DK, Feinholz ME, Yarbrough MA, Johnson BC, Brown SW, Kim YS, Barnes RA (2002) Overview of the radiometric calibration of MOBY. In: Barnes WL (ed.) Proceedings of SPIE, Earth Observing Systems VI, vol 4483, pp. 64–76

    Google Scholar 

  • Clark DK, Gordon HR, Voss KJ, Ge Y, Broenkow W, Trees C (1997) Validation of atmospheric correction over the oceans. J Geophys Res 102:17209–17217

    Article  Google Scholar 

  • D’Alimonte D, Zibordi G (2003) Phytoplankton determination in an optically complex coastal region using a multi layer perceptron neural network. IEEE Trans Geosc Rem Sens 41:2861–2868

    Article  Google Scholar 

  • D’Alimonte D, Zibordi G, Berthon JF (2004) Determination of CDOM and NPPM absorption coefficient spectra from coastal water remote sensing reflectance. IEEE Trans Geosc Rem Sens 42:1770–1777

    Article  Google Scholar 

  • Darecki M, Stramski D (2004) An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sens Environ 89:326–350

    Article  Google Scholar 

  • Dera J, Sagan S, Stramski D (1993) Focusing of sunlight by the sea surface waves: new results from the Black Sea. Oceanologia 34:13–25

    Google Scholar 

  • Dera J, Stramski D (1986) Maximum effects of sunlight focusing under a wind-disturbed sea surface. Oceanologia 23:15–42

    Google Scholar 

  • Dera J, Wensierski W, Olszewski J (1972) A two-detector integrating system for optical measurements in the sea. Acta Gephysica Polonica 20:3–159

    Google Scholar 

  • Deschamps PY, Fougnie B, Frouin R, Lecoomte P, Verwaerde C (2004) SIMBAD: a field radiometer for satellite ocean-color validation. Appl Opt 43:4055–4069

    Article  Google Scholar 

  • Doyle JP, Voss KJ (2000) 3D instrument self-shading effects on in-water multi-directional radiance measurements. Proceedings of the Ocean Optics XV, Monte Carlo, available from the Office of Naval Research, Arlington, VA

    Google Scholar 

  • Doyle JP, Zibordi G (2002) Optical propagation within a 3-dimensional shadowed atmosphere-ocean field: application to large deployment structures. Appl Opt 41:4283–4306

    Article  Google Scholar 

  • Fougnie B, Frouin R, Lecomte P, Deschamps PY (1999) Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance. Appl Opt 38:3844–3856

    Article  Google Scholar 

  • Franz BA, Bailey SW, Werdell PJ, McClain CR (2007) Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry. Appl Opt 46:5068–5082

    Article  Google Scholar 

  • Gershun A (1939) The light field. J Math Psychol 18:51–151 (translated by Moon P, Timoshenko G)

    Google Scholar 

  • Gordon HR (1985) Ship perturbation of irradiance measurements at sea. Part 1: Monte Carlo simulations. Appl Opt 24:4172–4182

    Article  Google Scholar 

  • Gordon HR (1997) Atmospheric correction of ocean color imagery in the Earth observing system era. J Geophys Res 102:17081–17106

    Article  Google Scholar 

  • Gordon HR, Clark DK (1981) Clear water radiances for atmospheric correction of coastal zone color scanner imagery. Appl Opt 20:4175–4180

    Article  Google Scholar 

  • Gordon HR, Ding K (1992) Self-shading of in-water optical instruments. Limnol Oceanogr 37:491–500

    Article  Google Scholar 

  • Grum F, Becherer RJ (1979) Optical radiation measurements, Academic Press, New York

    Google Scholar 

  • Helliwell WS, Sullivan GN, Macdonald B, Voss KJ (1990) Ship shadowing: model and data comparison. Proceedings of Ocean Optics X, SPIE vol 1302, pp. 55–71

    Google Scholar 

  • Hooker SB, Aiken J (1998) Calibration evaluation and radiometric testing of field radiometers with the SeaWiFS quality monitor (SQM). J Atmos Oceanic Technol 15:995–1007

    Article  Google Scholar 

  • Hooker SB, Lazin G, Zibordi G, McClean S (2002a) An evaluation of above and in-water methods for determining water leaving radiances. J Atmos Oceanic Technol 19:486–515

    Article  Google Scholar 

  • Hooker SB, Maritorena S (2000) An evaluation of oceanographic radiometers and deployment methodologies. J Atmos Oceanic Technol 17:811–830

    Article  Google Scholar 

  • Hooker SB, McLean S, Sherman J, Small M, Lazin G, Zibordi G, Brown JW (2002b) The Seventh SeaWiFS Intercalibration Round-Robin Experiment (SIRREX-7), TM-2003-206892, vol 17, p. 69. NASA Goddard Space Flight Center, Greenbelt, MD

    Google Scholar 

  • Hooker SB, Morel A (2003) Platform and environmental effects on above-water determinations of water-leaving radiances. J Atmos Oceanic Technol 20:187–205

    Article  Google Scholar 

  • Hooker SB, Zibordi G (2005a) Advanced methods for characterizing the immersion factor of irradiance sensors. J Atmos Oceanic Technol 22:757–770

    Article  Google Scholar 

  • Hooker SB, Zibordi G (2005b) Platform perturbation in above-water radiometry. Appl Opt 44:553–567

    Article  Google Scholar 

  • Hooker SB, Zibordi G, Berthon JF, Brown JW (2004) Above-water radiometry in shallow coastal waters. Appl Opt 21:4254–4268

    Article  Google Scholar 

  • Jerlov NG (1951) Optical studies of ocean water. Report of the Swedish Deep-Sea Expedition, 3

    Google Scholar 

  • Jerlov NG (1976) Marine Optics, vol 14 of Oceanography, Elsevier, Amsterdam

    Google Scholar 

  • Jerlov NG, Fukuda M (1960) Radiance distribution in the upper layers of the sea. Tellus 12:348–355

    Article  Google Scholar 

  • Jerlov NG, Liljequist G (1938) On the angular distribution of submarine deylight and the total sumbarine illumination. Sven Hydrogr Biol Komm Skr, Ny Ser Hydrogr 14:1–15

    Google Scholar 

  • Johnston SF (2001) A history of light and color measurement: science in the shadow. Institute of Physics Publishing, Bristol

    Google Scholar 

  • Kirk JTO (1994) Light & photosynthesis in aquatic ecosystems, Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kishino M, Ishizaka J, Saitoh S, Senga J, Utashima M (1997) Verification plan for ocean color and temperature scanner atmospheric correction and phytoplankton pigment by moored optical buoy system. J Geophys Res 102:1719–1727

    Article  Google Scholar 

  • Kundsen M (1922) On measurements of the penetration of light into the sea. Pub de Circ 76:1–15 (Cons Perm Internat Explor Mer)

    Google Scholar 

  • Kuwahara VS, Chang G, Zheng X, Dickey T, Jiang S (2008) Optical moorings of opportunity for validation of ocean color satellites. J Oceanogr 64:691–703

    Article  Google Scholar 

  • Leathers RA, Downes TV, Mobley CD (2001) Self-shading correction for upwelling sea-surface radiance measurements made with buoyed instruments. Opt Express 8:561–570

    Article  Google Scholar 

  • Leathers RA, Downes TV, Mobley CD (2004) Self-shading correction for oceanographic upwelling radiometers. Opt Express 12:4709–4718

    Article  Google Scholar 

  • Lee ZP, Darecki M, Carder KL, Davis CO, Stramski D, Rhea WJ (2005) Diffuse attenuation coefficient of downwelling irradiance: evaluation of remote sensing methods. J Geophys Res 110:C02017, doi:10.1029/2004JC002573

    Article  Google Scholar 

  • Le Grand Y (1939) La pénétration de la lumière dans la mer. Ann Inst Ocèanogr 19:393–436

    Google Scholar 

  • Lewis MR, Harrison WG, Oakey NS, Herbert D, Platt T (1986) Vertical nitrate fluxes in the oligotrophic ocean. Science 234:870–873

    Article  Google Scholar 

  • Maritorena S, Siegel DA, Peterson AR (2002) Optimization of a semianalytical ocean color model for global-scale applications. Appl Opt 41:2705–2714

    Article  Google Scholar 

  • McClain CR, Feldman GC, Hooker SB (2004) An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean biooptical time-series. Deep Sea Res 51:5–42

    Article  Google Scholar 

  • Mélin F, Berthon J-F, Zibordi G (2005) Assessment of apparent and inherent optical properties derived from SeaWiFS with field data. Remote Sens Environ 97:540–553

    Article  Google Scholar 

  • Mélin F, Zibordi G, Berthon J-F (2007) Assessment of satellite ocean color products at a coastal site. Remote Sens Environ 110:192–215

    Article  Google Scholar 

  • Mobley CD (1994) Light and water. Radiative transfer in natural waters, Academic Press, San Diego, CA

    Google Scholar 

  • Mobley CD (1999) Estimation of the remote sensing reflectance from above-water methods. Appl Opt 38:7442–7455

    Article  Google Scholar 

  • Morel A (1980) In-water and remote measurements of ocean color. Bound Layer Meteorol 18:177–201

    Article  Google Scholar 

  • Morel A, Antoine D, Gentili B (2002) Bidirectional reflectance of oceanic waters: accounting for raman emission and varying particle scattering phase function. Appl Opt 41:6289–6306

    Article  Google Scholar 

  • Morel A, Gentili B (1996) Diffuse reflectance of ocean waters III: implication of bidirectionality for the remote-sensing problem. Appl Opt 35:4850–4862

    Article  Google Scholar 

  • Mueller JL (1995) Comparison of irradiance immersion coefficients for several marine environmental radiometers (MERs). In: Hooker S, Firestone E, Acker J (eds.) Case studies for SeaWiFS calibration and validation, TM-1995-104566, Part 3, vol 27, p. 46, NASA Goddard Space Flight Center, Greenbelt, MD

    Google Scholar 

  • Mueller JL, Austin RW (1995) Ocean optics protocols for SeaWiFS validation, rev 1, TM-1995-104566, vol 25 of SeaWiFS Technical Report Series, p. 66, NASA Goddard Space Flight Center, Greenbelt, MD

    Google Scholar 

  • O’Reilly JE, Maritorena S, Mitchell BG, Siegel DA, Carder KL, Garver SA, Kahru M, McClain CR (1998) Ocean color chlorophyll algorithms for SeaWiFS. J Geophys Res 103:24937–24953

    Article  Google Scholar 

  • Pettersson H, Landberg S (1934) Submarine daylight. Medd Oceanogr Inst Göteborg 6:1–13

    Google Scholar 

  • Petzold TJ, Austin RW (1988) Chracterization of MER-1032. Tech. Memo. EN-001-88T, Visibility Laboratory of the Scripps Institution of Oceanography, University of California, San Diego, CA

    Google Scholar 

  • Pinkerton MH, Aiken J (1999) Calibration and validation of remotely-sensed observations of ocean colour from a moored data buoy. J Atmos Oceanic Technol 16:915–923

    Article  Google Scholar 

  • Piskozub J (2004) Effect of ship shadow on in-water irradiance measurements. Oceanologia 46:103–112

    Google Scholar 

  • Piskozub J, Weeks AR, Schwarz JN, Robinson IS (2000) Self-shading of upwelling irradiance for an instrument with sensors on a sidearm. Appl Opt 39:1872–1878

    Article  Google Scholar 

  • Robinson IS (2004) Measuring the oceans from space: the principles and methods of satellite oceanography, Springer, Berlin

    Google Scholar 

  • Saruya Y, Oishi T, Kishino KKM, Jodai Y, Tanaka A (1996) Influence of ship shadow on underwater irradiance fields. Proceedings of the Ocean Optics XIII, SPIE, vol 2963

    Google Scholar 

  • Schenck H (1957) On the focusing of sunlight by ocean waves. J Opt Soc Am 47:653–657

    Article  Google Scholar 

  • Shoulejkin W (1924) On the color of the sea. Phys Rev 23:744–751

    Article  Google Scholar 

  • Slater PN (1980) Remote sensing: optics and optical systems, Addison-Wesley Publishing Company, Reading, MA

    Google Scholar 

  • Smith RC (1974) Structure of solar radiation in the upper layers of the sea. In: Jerlov NG, Steeman Nielson E (eds.) Optical aspects of oceanography, Academic Press, New York

    Google Scholar 

  • Smith RC, Austin RW, Tyler JE (1969) An oceanographic radiance distribution camera system. Appl Opt 27:341–351

    Google Scholar 

  • Smith RC, Baker KS (1984) The analysis of ocean optical data. Proc Ocean Opt VII, SPIE 478:119–126

    Google Scholar 

  • Smith RC, Baker KS (1986) Analysis of ocean optical data II. Proc Ocean Opt VIII, SPIE 637:5–107

    Google Scholar 

  • Smith RC, Booth CR, Star JL (1984) Oceanographic biooptical profiling system. Appl Opt 23:2791–2797

    Article  Google Scholar 

  • Snyder RL, Dera J (1970) Wave-induced light-field fluctuations in the sea. J Opt Soc Am 60:1072–1079

    Article  Google Scholar 

  • Spinrad RW, Carder KL, Perry MJ (1994) Ocean optics, Oxford University Press, Oxford

    Google Scholar 

  • Steeman Nielsen E (1951) Conditions of light in the fjord. Medd Denmarks Fiskeri-og Havunders 5:21–27

    Google Scholar 

  • Stramski D, Dera J (1988) On the mechanism for producing flashing light under a wind disturbed water surface. Oceanologia 25:5–21

    Google Scholar 

  • Thuillier G, Herse M, Labs D, Foujols T, Peetermans W, Gillotay D, Simon PC, Mandel H (2003) The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions. Solar Phys 214:1–22

    Article  Google Scholar 

  • Toole DA, Siegel DA, Menzies DW, Neumann MJ, Smith RC (2000) Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability. Appl Opt 39:456–469

    Article  Google Scholar 

  • Tyler JE (1960) Radiance distribution as a function of depth in an underwater environment. Bull Scripps Inst Oceanogr 7:363–412

    Google Scholar 

  • Tyler JE (1977) Light in the sea, Dowden, Hutchinson and Ross, Inc, Stroudsburg, PA

    Google Scholar 

  • Tyler JE, Smith RC (1970) Measurements of spectral irradiance underwater, Gordon and Breach Science Publishers, New York

    Google Scholar 

  • Voss KJ (1989) Use of the radiance distribution to measure the optical absorption coefficient in the ocean. Limn Oceanogr 34:1614–1622

    Article  Google Scholar 

  • Voss KJ, Chapin AL (2005) Upwelling radiance distribution camera system NURADS. Opt Express 13:4250–4262

    Article  Google Scholar 

  • Voss KJ, Morel A (2005) Bidirectional reflectance function for oceanic waters with varying chlorophyll concentrations: measurements versus predictions. Limn Oceanogr 50:698–705

    Article  Google Scholar 

  • Voss KJ, Nolten JW, Edwards GD (1986) Ship shadow effects on apparent optical properties. Proc Ocean Opt VIII, SPIE 637:186–190

    Google Scholar 

  • Walker RE (1994) Marine light field statistics, John Wiley & Sons, Inc, New York

    Google Scholar 

  • Waters KJ, Smith RC, Lewis MR (1990, November) Avoiding ship-induced light-field perturbation in the determination of oceanic optical properties. Oceanography 3:18–21

    Google Scholar 

  • Weidemann A, Hollman R, Wilcox M, Linzell B (1990) Calculation of near surface attenuation coefficients: the influence of wave focusing. Proc Ocean Opt X, SPIE 1302:492–504

    Google Scholar 

  • Weir CT, Siegel DA, Michaels AF, Menzies DW (1994) In situ evaluation of a ships shadow. Proc Ocean Opt XII, SPIE 2258:815–821

    Google Scholar 

  • Werdell PJ, Bailey S, Fargion G, Pietras C, Knobelspiesse K, Feldman G, McClain CR (2003) Unique data repository facilitates ocean color satellite validation. Eos Tran 84:377–387

    Google Scholar 

  • Westlake DF (1965) Some problems in the measurement of radiation under water: a review. Photochem Photobiol 4:849–868

    Article  Google Scholar 

  • Wyatt CL (1978) Radiometric calibration: theory and methods, Academic Press, New York

    Google Scholar 

  • Zaneveld JRV, Boss E, Barnard A (2001) Influence of surface waves on measured and modeled irradiance profiles. Appl Opt 40:442–449

    Article  Google Scholar 

  • Zibordi G (2006) Immersion factor of in-water radiance sensors: assessment for a class of radiometers. J Atmos Oceanic Technol 23:302–313

    Article  Google Scholar 

  • Zibordi G, Berthon J-F, D’Alimonte D (2009a) An evaluation of radiometric products from fixed-depth and continuous in-water profile data from moderately complex coastal waters. J Atmos Oceanic Technol 26:91–186

    Article  Google Scholar 

  • Zibordi G, Bulgarelli B (2008) Effects of cosine error in irradiance measurements from field ocean color radiometers. Appl Opt 46:5529–5538

    Article  Google Scholar 

  • Zibordi G, D’Alimonte D, Berthon JF (2004a) An evaluation of depth resolution requirements for optical profiling in coastal waters. J Atmos Oceanic Technol 21:1059–1073

    Article  Google Scholar 

  • Zibordi G, Darecki M (2006) Immersion factor for the RAMSES series of hyper-spectral underwater radiometers. J Opt A also Appl Opt 8:252–258

    Article  Google Scholar 

  • Zibordi G, Doyle GP, Hooker SB (1999) Offshore tower shading effects on in-water optical measurements. J Atmos Oceanic Technol 16:1767–1779

    Article  Google Scholar 

  • Zibordi G, Ferrari G (1995) Instrument self-shading in underwater optical measurements: experimental data. Appl Opt 34:2750–2754

    Article  Google Scholar 

  • Zibordi G, Holben B, Slutsker I, Giles D, D’Alimonte D, Mélin F, Berthon J-F, Vandemark D, Feng H, Schuster G, Fabbri B, Kaitala S, Seppälä J (2009b) AERONET-OC: a network for the validation of ocean color primary radiometric products. J Atmos Oceanic Technol 26:1634–1651

    Article  Google Scholar 

  • Zibordi G, Hooker SB, Berthon J-F, D’Alimonte D (2002) Autonomous above-water radiance measurement from an offshore platform: a field assessment experiment. J Atmos Oceanic Technol 19:808–819

    Article  Google Scholar 

  • Zibordi G, Hooker SB, Mueller JL, McLean S, Lazin G (2004b) Characterization of the immersion factor for a series of in water optical radiometers. J Atmos Oceanic Technol 21:501–514

    Article  Google Scholar 

  • Zibordi G, Mélin F, Berthon J-F (2006) Comparison of SeaWiFS, MODIS, and MERIS radiometric products at a coastal site. Geophys Res Lett 33:L06617, doi:10.1029/2006GL025778

    Article  Google Scholar 

  • Zibordi G, Mélin F, Hooker SB, D’Alimonte D, Holben B (2004c) An autonomous above-water system for the validation of ocean color radiance data. IEEE Trans Geosci Remote Sens 42:401–415

    Article  Google Scholar 

Download references

Acknowledgments

Acknowledgments are due to the European Commission (EC), the European Space Agency (ESA), the Office of Naval Research (ONR) and the National Aeronautics and Space Administration (NASA), which through EC Framework Programs, the ESA Envisat Program, the ONR Ocean Optics Program and the NASA Biogeochemistry Program, supported the recent research and developments in marine radiometry presented in this chapter. Finally, a sincere appreciation is expressed to all those scientists who put their efforts in progressing in marine optical radiometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Zibordi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zibordi, G., Voss, K.J. (2010). Field Radiometry and Ocean Color Remote Sensing. In: Barale, V., Gower, J., Alberotanza, L. (eds) Oceanography from Space. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8681-5_18

Download citation

Publish with us

Policies and ethics