Skip to main content

Brain Tumors: Amide Proton Transfer Imaging

  • Chapter
  • First Online:
  • 1189 Accesses

Part of the book series: Methods of Cancer Diagnosis, Therapy and Prognosis ((HAYAT,volume 8))

Abstract

Amide proton transfer (APT) imaging is a new molecular MRI technique that detects endogenous mobile proteins and peptides in tissue. In this Chapter, the preclinical studies and pilot clinical data in brain tumor imaging are reviewed. APT imaging provides unique information regarding the presence and grade of brain tumors at the protein and peptide level. It has the potential to enhance the noninvasive detection and characterization of brain cancers before and after treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

REFERENCES

  • Aime, S., Barge, A., Delli Castelli, D., Fedeli, F., Mortillaro, A., Nielsen, F.U., and Terreno, E. (2002) Paramagnetic Lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn. Reson. Med. 47:639–648

    Article  CAS  PubMed  Google Scholar 

  • Aime, S., Carrera, C., Delli Castelli, D., Geninatti Crich, S., and Terreno, E. (2005) Tunable imaging of cells labelled with MRI-PARACEST agents. Angew. Chem. Int. Ed. 44:1813–1815

    Article  CAS  Google Scholar 

  • Albert, F.K., Forsting, M., Sartor, K., Adams, H.-P., and Kunze, S. (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34:45–60

    Article  CAS  PubMed  Google Scholar 

  • Balaban, R.S., and Ceckler, T.L. (1992) Magnetization transfer contrast in magnetic resonance imaging. Magn. Reson. Q. 8:116–137

    CAS  PubMed  Google Scholar 

  • Burger, P.C., Heinz, E.R., Shibata, T., and Kleihues, P. (1988) Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J. Neurosurg. 68:698–704

    Article  CAS  PubMed  Google Scholar 

  • Chenevert, T.L., McKeever, P.E., and Ross, B.D. (1997) Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin. Cancer Res. 3:1457–1466

    CAS  PubMed  Google Scholar 

  • Ersoy, H., and Rybicki, F.J. (2007) Biochemical safety profiles of gadolinium-based extracellular contrast agents and nephrogenic systemic fibrosis. J. Magn. Reson. Imaging 26:1190–1197

    Article  PubMed  Google Scholar 

  • Gauvain, K.M., McKinstry, R.C., Mukherjee, P., Perry, A., Neil, J.J., Kaufman, B.A., and Hayashi, R.J. (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. Am. J. Roentgenol. 177:449–454

    CAS  Google Scholar 

  • Gilad, A.A., McMahon, M.T., Walczak, P., Winnard, P.T., Raman, V., van Laarhoven, H.W.M., Skoglund, C.M., Bulte, J.W.M., and van Zijl, P.C.M. (2007) Artificial reporter gene providing MRI contrast based on proton exchange. Nature Biot. 25:217–219

    Article  CAS  Google Scholar 

  • Gillies, R.J., Bhujwalla, Z., Evelhoch, J., Garwood, M., Neeman, M., Robinson, S.P., Sotak, C.H., and van der Sanden, B. (2000) Applications of magnetic resonance in model systems: tumor biology and physiology. Neoplasia 2:139–151

    Article  CAS  PubMed  Google Scholar 

  • Goffeney, N., Bulte, J.W.M., Duyn, J., Bryant, L.H., and van Zijl, P.C.M. (2001) Sensitive NMR detection of cationic-polymer-based gene delivery systems using saturation transfer via proton exchange. J. Am. Chem. Soc. 123:8628–8629

    Article  CAS  PubMed  Google Scholar 

  • Hobbs, S.K., Shi, G., Homer, R., Harsh, G., Altlas, S.W., and Bednarski, M.D. (2003) Magnetic resonance imaging-guided proteomics of human glioblastoma multiforme. J. Magn. Reson. Imaging 18:530–536

    Article  PubMed  Google Scholar 

  • Howe, F.A., Barton, S.J., Cudlip, S.A., Stubbs, M., Saunders, D.E., Murphy, M., Wilkins, P., Opstad, K.S., Doyle, V.L., McLean, M.A., Bell, B.A., and Griffiths, J.R. (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn. Reson. Med. 49:223–232

    Article  CAS  PubMed  Google Scholar 

  • Jokivarsi, K.T., Grohn, H.I., Grohn, O.H., and Kauppinen, R.A. (2007) Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia. Magn. Reson. Med. 57:647–653

    Article  CAS  PubMed  Google Scholar 

  • Jones, C.K., Schlosser, M.J., van Zijl, P.C., Pomper, M.G., Golay, X., and Zhou, J. (2006) Amide proton transfer imaging of human brain tumors at 3T. Magn. Reson. Med. 56:585–592

    Article  PubMed  Google Scholar 

  • Kelly, P.J., Daumas-Duport, C., Kispert, D.B., Kall, B.A., Scheithauer, B.W., and Illig, J.J. (1987) Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J. Neurosurg. 66:865–874

    Article  CAS  PubMed  Google Scholar 

  • Knopp, E.A., Cha, S., Johnson, G., Mazumdar, A., Golfinos, J.G., Zagzag, D., Miller, D.C., Kelly, P.J., and Kricheff, I.I. (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798

    CAS  PubMed  Google Scholar 

  • Law, M., Yang, S., Wang, H., Babb, J.S., Johnson, G., Cha, S., Knopp, E.A., and Zagzag, D. (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am. J. Neuroradiol. 24:1989–1998

    PubMed  Google Scholar 

  • Ling, W., Regatte, R.R., Navon, G., and Jerschow, A. (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependnt saturation transfer (gagCEST). Proc. Natl. Acad. Sci. USA 105:2266–2270

    Article  CAS  PubMed  Google Scholar 

  • Mullins, M.E., Barest, G.D., Schaefer, P.W., Hochberg, F.H., Gonzalez, R.G., and Lev, M.H. (2005) Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am. J. Neuroradiol. 26:1967–1972

    PubMed  Google Scholar 

  • Ross, B.D., Higgins, R.J., Boggan, J.E., Knittel, B., and Garwood, M. (1988) 31P NMR spectroscopy of the in vivo metabolism of an intracerebral glioma in the rat. Magn. Reson. Med. 6:403–417

    Article  CAS  PubMed  Google Scholar 

  • Salhotra, A., Lal, B., Laterra, J., Sun, P.Z., van Zijl, P.C.M., and Zhou, J. (2008) Amide proton transfer imaging of 9L gliosarcoma and human glioblastoma xenografts. NMR Biomed. 21:489–497

    Article  PubMed  Google Scholar 

  • Scott, J.N., Brasher, P.M., Sevick, R.J., Rewcastle, N.B., and Forsyth, P.A. (2002) How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology 59:947–949

    Article  CAS  PubMed  Google Scholar 

  • Sun, P.Z., Zhou, J., Sun, W., Huang, J., and van Zijl, P.C.M. (2007) Delineating the boundary between the Ischemic Penumbra and regions of Oligaemia using pH-weighted Magnetic Resonance Imaging (pHWI). J. Cereb. Blood Flow Metab. 27:1129–1136

    Article  PubMed  Google Scholar 

  • van Zijl, P.C.M., Jones, C.K., Ren, J., Malloy, C.R., and Sherry, A.D. (2007) MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc. Natl. Acad. Sci. USA 104:4359–4364

    Article  PubMed  Google Scholar 

  • Vigneron, D., Bollen, A., McDermott, M., Wald, L., Day, M., Moyher-Noworolski, S., Henry, R., Chang, S., Berger, M., Dillon, W., and Nelson, S. (2001) Three-dimensional magnetic resonance spectroscopic imaging of histologically confirmed brain tumors. Magn. Reson. Imaging 19:89–101

    Article  CAS  PubMed  Google Scholar 

  • Ward, K.M., Aletras, A.H., and Balaban, R.S. (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J. Magn. Reson. 143:79–87

    Article  CAS  PubMed  Google Scholar 

  • Wolff, S.D., and Balaban, R.S. (1990) NMR imaging of labile proton exchange. J. Magn. Reson. 86:164–169

    CAS  Google Scholar 

  • Yoo, B., and Pagel, M.D. (2006) A PARACEST MRI contrast agent to detect enzyme activity. J. Am. Chem. Soc. 128:14032–14033

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., Winter, P., Wu, K., and Sherry, A.D. (2001) A novel europium(III)-based MRI contrast agent. J. Am. Chem. Soc. 123:1517–1578

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., Trokowski, R., and Sherry, A.D. (2003) A paramagnetic CEST agent for imaging glucose by MRI. J. Am. Chem. Soc. 125:15288–15289

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J., Payen, J., Wilson, D.A., Traystman, R.J., and van Zijl, P.C.M. (2003a) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nature Med. 9:1085–1090

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J., Lal, B., Wilson, D.A., Laterra, J., and van Zijl, P.C.M. (2003b) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn. Reson. Med. 50:1120–1126

    Article  PubMed  Google Scholar 

  • Zhou, J., Wilson, D.A., Sun, P.Z., Klaus, J.A., and van Zijl, P.C.M. (2004) Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magn. Reson. Med. 51:945–952

    Article  PubMed  Google Scholar 

  • Zhou, J., Blakeley, J.O., Hua, J., Kim, M., Laterra, J., Pomper, M.G., and van Zijl, P.C.M. (2008) Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging. Magn. Reson. Med. 60:842–849

    Article  PubMed  Google Scholar 

Download references

Acknowledgments.This work was supported in part by grants from NIH (RR015241 and EB002634) and the Dana Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyuan Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Zhou, J., Blakeley, J.O. (2011). Brain Tumors: Amide Proton Transfer Imaging. In: Hayat, M. (eds) Methods of Cancer Diagnosis, Therapy, and Prognosis. Methods of Cancer Diagnosis, Therapy and Prognosis, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8665-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8665-5_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8664-8

  • Online ISBN: 978-90-481-8665-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics