Skip to main content

Modification of Anthraquinone-2-Carboxylic Acid with Multiwalled Carbon Nanotubes and Electrocatalytic Behavior of Prepared Nanocomposite Towards Oxygen Reduction

  • Chapter
  • First Online:

Abstract

We herein report a simple method for the preparation of multiwalled carbon nanotubes-anthraquinone-2-carboxylic acid (AQ-COOH-AMWCNTs) nano-composite. For the preparation of the composite, multiwalled carbon nanotubes have been functionalized with amino group (AMWCNTs) using 3-aminopropyltrimetho-xysilane. Then, anthraquinone-2-carboxylic acid is coupled to amino functionalized multiwalled carbon nanotubes (AMWCNTs) by carbodiimide coupling. Characterization of the material has been performed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), fourier transform IR (FTIR) and cyclic voltammetry (CV). The prepared material exhibited electrocatalytic behavior towards the reduction of oxygen to hydrogen peroxide with a detection limit of 0.02 ppm. The prepared material was stable with no leaching observed of the mediator.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Menon VP, Martin CR (1995) Fabrication and evaluation of nanoelectrode ensembles. Anal Chem 67:1920–1928

    Article  CAS  Google Scholar 

  2. Martin CR (1994) Nanomaterials: a membrane based synthetic approach. Science 266: 1961–1966

    Article  CAS  Google Scholar 

  3. Baughman RH, Zakhidov AA, DeHeer WA (2002) Carbon nanotubes-the route toward applications. Science 297:787–792

    Article  CAS  Google Scholar 

  4. Britto PJ, Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg 41:121–125

    Article  CAS  Google Scholar 

  5. Reza O, Jahanbakhsh R, Manochehr E (2001) A cyclic voltammetric study of the aqueous electrochemistry of some anthraquinone derivatives on carbon paste electrode. Iran J Chem Chem Eng 20:75

    Google Scholar 

  6. Ksenzhek OS, Petrova SA (1986) Electrochemical properties of reversible biological redox systems. Nauka, Moscow, p 75

    Google Scholar 

  7. Petrova SA, Kolodyazhny MV, Ksenzhek OS (1990) Electrochemical properties of some naturally occurring quinines. J Electoanal Chem 277:189–196

    Article  CAS  Google Scholar 

  8. Zon A, Palys M, Stojek Z, Sulowska H, Ossowski T (2003) Supramolecular derivatives of 9,10 anthaquinone. Electrochemistry of regular and low ionic strength and complexing properties. Electroanalysis 15:579–585

    Article  CAS  Google Scholar 

  9. Hu SS, Xu CL, Wang GP, Cui DF (2001) Voltammetric determination of 4-nitriphenol at a sodium montmorillomite-anthraquinone chemically modified glassy carbon electrode. Talanta 54:115–123

    Article  CAS  Google Scholar 

  10. Soriaga MP, Hubbard AT (1982) Determination of the orientation of adsorbed molecules at solid-liquid interfaces by thin layer electrochemistry: aromatic compounds at platinum electrodes. J Am Chem Soc 104:2735–2747

    Article  CAS  Google Scholar 

  11. He P, Crooks RM, Faulkner LR (1990) Adsorption and electrode reactions of disulfonated anthraquinones at mercury electrodes. J Phys Chem 94:1135–1141

    Article  CAS  Google Scholar 

  12. Zhang J, Anson FC (1992) Voltammetry and in-situ fourier transform IR spectroscopy of two anthraquinone disulfonates adsorbed on graphite electrode. J Electroanal Chem 331:945–957

    Article  CAS  Google Scholar 

  13. McDermott MT, Kneten K, McCreery RL (1992) Anthraquinonedisulfonate adsorption, electrode –transfer kinetics and capacitance on ordered graphite electrodes: the important role of surface defects. J Phys Chem 96:3124–3130

    Article  CAS  Google Scholar 

  14. Mohan TM, Gomathi H, Rao GP (1990) Quinone-hydroquinone modified glassy carbon electrode. Bull Electrochem 6:630–632

    CAS  Google Scholar 

  15. Gomathi H, Rao GP (1985) Chemical and electrochemical modification of the glassy carbon surface with quinhydrone. J Electroanal Chem 190:85

    Article  CAS  Google Scholar 

  16. Manisankar P, Gomathi A (2005) Electrocatalytic reduction of dioxygen at the surface of carbon paste electrodes modified with 9,10 anthraquinone derivatives and dyes. Electroanalysis 17:1051–1057

    Article  CAS  Google Scholar 

  17. Salimi A, Eshghi H, Sharghi H, Golabi SM, Shamsipur M (1999) Electrocatalytic reduction of dioxygen at the surface of glassy carbon electrodes modified by some anthraquinone substituted podands. Electroanalysis 11:114–119

    Article  CAS  Google Scholar 

  18. Maia G, Maschion FC, Tanimoto ST, Vaik K, Mäeorg U, Tammeveski K (2007) Attachment of anthraquinone derivatives to glassy carbon and the electrocatalytic behavior of the modified electrodes toward oxygen reduction. J Solid State Electrochem 11:1411–1420

    Article  CAS  Google Scholar 

  19. Mogharrab N, Ghourchian H (2005) Anthraquinone-2-carboxylic acid as an electron shuttling mediator and attached electron relay for horseradish peroxidase. Electrochem Commun 7: 466–471

    Article  CAS  Google Scholar 

  20. Calabrese GS, Buchanan RM, Wrighton MS (1983) Mediated electrochemical reduction of oxygen to hydrogen peroxide via a surface confined napthoquinone reagent and the mediated electrochemical reduction of a napthoquinone redox reagent anchored to high surface area oxides. J Am Chem Soc 105:5594–5600

    Article  CAS  Google Scholar 

  21. Delamar M, Hitmi R, Pinson J, Saveant JM (1992) Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. J Am Chem Soc 114:5883–5884

    Article  CAS  Google Scholar 

  22. Allongue P, Delamar M, Desbat B, Fagebaume O, Hitmi R, Pinson J, Saveant JM (1997) Covalent modification of carbon surfaces by grafting of functionalized aryl radicals generated from electrochemical reduction of diazonium salts. J Am Chem Soc 119:201–207

    Article  CAS  Google Scholar 

  23. Wilson T, Zhang J, Oloman CC, Wayner DDM (2006) Anthraquinone-2-carboxylic acid –allyl ester as a new electrocatalyst for dioxygen reduction to produce H2O2. Int J Electrochem Sci 1:99–109

    CAS  Google Scholar 

  24. Susan MABH, Begum M, Takeoka Y, Watanabe M (2000) Effect of pH and the extent of micellizatiion on the redox behavior of non-ionic surfactants containing an anthraquinone group. J Electroanal Chem 481:192–199

    Article  CAS  Google Scholar 

  25. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  26. Brown AB, Anson FC (1977) Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface. Anal Chem 49:1589–1595

    Article  CAS  Google Scholar 

  27. Bard AJ, Faulkner LR (1980) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  28. Manishanker P, Gomathi A, Velayutham D (2005) Oxygen reduction at the surface of glassy carbon electrodes modified with anthraquinone derivative and dyes. J Solid State Electrochem 9:601–608

    Article  Google Scholar 

  29. Damos FS, Luz RCS, Tanaka AA, Kuboto LT (2010) Dissolved oxygen amperometric sensorbased on layer by layer assembly using host-guest supramolecular interactions. Anal Chim Acta 664:144–150

    Article  CAS  Google Scholar 

  30. Duarte JC, Luz RCS, Damos FS, Tanaka AA, Kuboto LT (2008) A highly sensitive amperometric sensor for oxygen based on iron(II)tetrasulphonated pthalocyanine and iron (III)tetra-(N-methyl-pyridyl)-porphyrin multilayers. Anal Chim Acta 612:29–36

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to BRNS, DAE for financial support. One of the authors Manorama is grateful to CSIR, New Delhi for award of SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ida Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tiwari, I., Singh, M., Gupta, M. (2012). Modification of Anthraquinone-2-Carboxylic Acid with Multiwalled Carbon Nanotubes and Electrocatalytic Behavior of Prepared Nanocomposite Towards Oxygen Reduction. In: Gupta Bhowon, M., Jhaumeer-Laulloo, S., Li Kam Wah, H., Ramasami, P. (eds) Chemistry for Sustainable Development. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8650-1_25

Download citation

Publish with us

Policies and ethics