Skip to main content
Book cover

Taphonomy pp 79–105Cite as

Taphonomic Bias in Shelly Faunas Through Time: Early Aragonitic Dissolution and Its Implications for the Fossil Record

  • Chapter
  • First Online:

Part of the book series: Aims & Scope Topics in Geobiology Book Series ((TGBI,volume 32))

Abstract

Early diagenetic dissolution of skeletal carbonate in environments from seafloor to shallow burial has the potential to skew the marine fossil record of aragonitic shells, particularly molluscs. Taphonomic windows leading to the preservation of labile skeletal components include relatively rare occurrences of early mineral replacement by silica (skeletal lagerstätten). Another, much more frequent process is event deposition where dissolution is halted by rapid burial of shells. Shell plasters form in basinal mud or low energy lagoonal environments during temporary dysoxic episodes, such as are caused by algal blooms. Preservation potential for aragonitic fossils may be enhanced by early cementation during shallow burial (hardgrounds) that protects the delicate dissolution moulds from destruction by bioturbation, or in high energy shoal environments where the drive for microbial dissolution is reduced. A data-based environmental model summarizes the main taphonomic zones, and illustrates significant taphonomic bias against aragonitic shells in lower energy settings of platform interiors and mid-outer ramps/shelves. The temporal distribution of various taphonomic windows shows the limited occurrence of silicified faunas, while the nature and extent of shell beds also change, but there is no obvious correlation with periods of ‘calcite’ and ‘aragonite seas’.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexandersson, E. T. (1978). Destructive diagenesis of carbonate sediments in eastern Skagerrak, North Sea. Geology, 6, 324–327.

    Google Scholar 

  • Alexandersson, E. T. (1979). Marine maceration of skeletal carbonates in the Skagerrak, North Sea. Sedimentology, 26, 845–852.

    Google Scholar 

  • Aller, R. C. (1982). Carbonate dissolution in nearshore terrigenous muds: The role of physical and biological reworking. Journal of Geology, 90, 79–95.

    Google Scholar 

  • Aller, R. C., & Aller, J. Y. (1998). The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments. Journal of Marine Research, 56, 905–936.

    Google Scholar 

  • Allison, P. A., Wignall, P. B., & Brett, C. E. (1995). Palaeo-oxygenation: Effects and recognition. In D. W. J. Bosence & P. A. Allison (Eds.), Marine palaeoenvironmental analysis from fossils. Geological Society of London, Special Publication 83, 97–112.

    Google Scholar 

  • Angiolini, L., Balini, M., Garzanti, E., Nicora, A., Tintori, A., Crasquin, S., et al. (2003). Permian climatic and paleogeographic changes in Northern Gondwana: The Khuff Formation of Interior Oman. Palaeogeography, Palaeoclimatology, Palaeoecology, 191, 269–300.

    Google Scholar 

  • Bailey, J. B. (1983). Middle Devonian Bivalvia from the Solsville Member (Marcellus Formation), central New York State, USA. Bulletin of the American Museum of Natural History, 174(3), 196–325.

    Google Scholar 

  • Bassett, M. G. (2005). Silurian brachiopods and brachiopod biofacies of Gotland, Sweden: An excursion guide. Fifth International Brachiopod Congress, Copenhagen. National Museums and Galleries of Wales, Cardiff.

    Google Scholar 

  • Batten, R. L. (1966). The Lower Carboniferous gastropod fauna from the Hotwells Limestone of Compton Martin, Somerset. Palaeontographical Society Monographs 509, 1–52, pl. 51–55 (Part 1) and 513, 53–109, pl. 106–110 (Part 2).

    Google Scholar 

  • Behrensmeyer, A. K., Fursich, F. T., Gastaldo, R. A., Kidwell, S. M., Kosnik, M. A., Kowalewski, M., et al. (2005). Are the most durable shelly taxa also the most common in the marine fossil record? Paleobiology, 31(4), 607–623.

    Google Scholar 

  • Bevins, R. E., & Mason, J. S. (1997). Welsh metallophyte and metallogenic evaluation project: Results of a minesite survey of Dyfed and Powys. CCW Contract Science Report 156. National Museums & Galleries of Wales, Cardiff.

    Google Scholar 

  • Bottjer, D. J., & Ausich, W. I. (1986). Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology, 12, 400–420.

    Google Scholar 

  • Boucot, A. J. (1975). Evolution and extinction rate controls. Amsterdam: Elsevier.

    Google Scholar 

  • Boucot, A. J., & Lawson, J. D. (1999). Paleocommunities: A case study from the Silurian and Lower Devonian. Cambridge: Cambridge University Press.

    Google Scholar 

  • Boyer, D. L., Bottjer, D. J., & Droser, M. L. (2004). Ecological signature of Lower Triassic shell beds of the western United States. Palaios, 19(4), 372–380.

    Google Scholar 

  • Brett, C. E., Dick, V. B., & Baird, G. C. (1991). Comparative taphonomy and paleoecology of Middle Devonian dark gray and black shales facies from western New York. In E. Landing & C. E. Brett (Eds.), Dynamic stratigraphy and depositional environments of the Hamilton Group (Middle Devonian) in New York State Part II. New York State Museum Bulletin 469, 5–36.

    Google Scholar 

  • Brett, C. E., Kirchner, B. T., Tsujita, C. J., & Dattilo, B. F. (2008). Depositional dynamics recorded in mixed siliciclastic-carbonate marine successions: Insights from the Upper Ordovician Kope Formation of Ohio and Kentucky, USA. In B. R. Pratt & C. Holmden (Eds.), Dynamics of epeiric seas. Geological Association Canada, Special Papers, 48 73–102.

    Google Scholar 

  • Burchette, T. P., & Wright, V. P. (1992). Carbonate ramp depositional systems. Sedimentary Geology, 79, 3–57.

    Google Scholar 

  • Bush, A. M., & Bambach, R. K. (2004). Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology, 112(6), 625–642.

    Google Scholar 

  • Canfield, D. C., & Raiswell, R. (1991a). Carbonate precipitation and dissolution; its relevance to fossil preservation. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy: Releasing the data locked in the fossil record. New York: Plenum.

    Google Scholar 

  • Canfield, D. C., & Raiswell, R. (1991b). Pyrite formation and fossil preservation. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy: Releasing the data locked in the fossil record. New York: Plenum.

    Google Scholar 

  • Carson, G. A. (1991). Silicification of fossils. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy: Releasing the data locked in the fossil record. New York: Plenum.

    Google Scholar 

  • Carter, J. G. (1980). Environmental and biological controls of bivalve shell mineralogy and microstructure. In D. C. Rhoads & R. A. Morse (Eds.), Skeletal growth of aquatic organisms. New York: Plenum.

    Google Scholar 

  • Carter, J. G. (1990). Skeletal biomineralization patterns, processes and evolutionary trends. New York: Van Nostrand and Reinhold.

    Google Scholar 

  • Carter, J. G., Barrera, E., & Tevesz, M. J. S. (1998). Thermal potentiation and mineralogical evolution in the Bivalvia (Mollusca). Journal of Paleontology, 72, 991–1010.

    Google Scholar 

  • Chatterton, B. D. E. (1973). Brachiopods of the Murrumbidgee Group, Taemas, New South Wales. Australian Bureau of Mineral Resources, Geology and Geophysics Bulletin, 137, 146. + 135 pl.

    Google Scholar 

  • Cherns, L. (1998a). Chelodes and closely related Polyplacophora (Mollusca) from the Silurian of Gotland, Sweden. Palaeontology, 41, 545–573.

    Google Scholar 

  • Cherns, L. (1998b). Silurian polyplacophoran molluscs from Gotland, Sweden. Palaeontology, 41, 939–974.

    Google Scholar 

  • Cherns, L., & Wright, V. P. (2000). Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology, 28(9), 791–794.

    Google Scholar 

  • Cherns, L., & Wright, V. P. (2009) Quantifying the impacts of early diagenetic aragonite dissolution on the fossil record. Palaios, 24, 756–771.

    Google Scholar 

  • Cherns, L., Wheeley, J. R., & Karis, L. (2006). Tunneling trilobites: Habitual infaunalism in an Ordovician carbonate seafloor. Geology, 34, 657–660.

    Google Scholar 

  • Cherns, L., Wheeley, J. R., & Wright, V. P. (2008). Taphonomic windows and molluscan preservation. Palaeogeography, Palaeoclimatology, Palaeoecology, 270(3–4), 220–229.

    Google Scholar 

  • Cope, J. C. W. (1996). Early Ordovician (Arenig) bivalves from the Llangynog Inlier, south Wales. Palaeontology, 39, 979–1025.

    Google Scholar 

  • Cope, J. C. W. (1999). Middle Ordovician bivalves from mid-Wales and the Welsh Borderland. Palaeontology, 42, 467–499.

    Google Scholar 

  • Cossey, P., Adams, A. E., Wright, V. P., Whiteley, M. J., Whyte, M., & Purnell, M. (2004). British Lower Carboniferous stratigraphy. JNCC Geological Conservation Review, 29, xix +617 pp.

    Google Scholar 

  • Cox, M., Sumbler, M.G., & Ivimey-Cook, H.C. (1999). A formational framework for the Lower Jurassic of England and Wales (onshore area). British Geological Survey Research Report RR/99/01.

    Google Scholar 

  • Cummins, H., Powell, E. N., Stanton, R. J., & Staff, G. M. (1986). The rate of taphonomic loss in modern benthic habitats: How much of the potentially preservable community is preserved? Palaeogeography, Palaeoclimatology, Palaeoecology, 52, 291–320.

    Google Scholar 

  • Dattilo, B. F., Brett, C. E., Tsujita, C. J., & Fairhurst, R. (2008). Sediment supply versus storm winnowing in the development of muddy and shelly interbeds from the Upper Ordovician of the Cincinnati region, USA. Canadian Journal of Earth Sciences, 45(2), 243–265.

    Google Scholar 

  • Davies, D. J., Powell, E. N., & Staff, G. M. (1989). Relative rates of shell dissolution and net sedimentary accumulation – A commentary: Can shell beds form by the gradual accumulation of biogenic debris on the sea floor? Lethaia, 22, 207–212.

    Google Scholar 

  • Dick, V. B., & Brett, C. E. (1986). Petrology, taphonomy, and sedimentary environments of pyritic fossil beds from the Hamilton Group, Middle Devonian of Western New York USA. New York State Museum Bulletin, 457, 102–128.

    Google Scholar 

  • Dickins, J. M. (1999). Mid-Permian (Kubergandian-Murgabian) bivalves from the Khuff formation, Oman: Implications for world events and correlation. Rivista Italiana di Paleontologia e Stratigrafia, 105(1), 23–35.

    Google Scholar 

  • Droser, M. L. (2002). Ecological changes through geological time. In D. E. G. Briggs & P. R. Crowther (Eds.), Palaeobiology II. UK: Blackwell.

    Google Scholar 

  • Droser, M. L., & Bottjer, D. J. (1989). Ordovician increase in extent and depth of bioturbation - implications for understanding early Paleozoic ecospace utilization. Geology, 17(9), 850–852.

    Google Scholar 

  • Duff, K. L. (1975). Palaeoecology of a bituminous shale – The Lower Oxford Clay of central England. Palaeontology, 18, 443–482.

    Google Scholar 

  • Falini, G., Albeck, S., Weiner, S., & Addadi, L. (1996). Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science, 271(5245), 67–69.

    Google Scholar 

  • Finnegan, S., & Droser, M. L. (2008). Reworking diversity: Effects of storm deposition on evenness and sampled richness, Ordovician of the Basin and Range, Utah and Nevada, USA. Palaios, 23, 87–96.

    Google Scholar 

  • Flessa, K. W., & Brown, T. J. (1983). Selective solution of macroinvertebrate calcareous hard parts: A laboratory study. Lethaia, 16, 193–205.

    Google Scholar 

  • Fletcher, C. J. N. (1988). Tidal erosion, solution cavities and exhalative mineralization associated with the Jurassic unconformity at Ogmore, South Glamorgan. Proceedings of the Geologists’ Association, 99, 1–14.

    Google Scholar 

  • Fraiser, M. L., & Bottjer, D. J. (2004). The non-actualistic Early Triassic gastropod fauna; a case study of the Lower Triassic Sinbad Limestone Member. Palaios, 19, 259–275.

    Google Scholar 

  • Freiwald, A. (1995). Bacteria-induced carbonate degradation – A taphonomic case- study of Cibicides Lobatulus from a high-boreal carbonate setting. Palaios, 10(4), 337–346.

    Google Scholar 

  • Fursich, F. T., & Pandey, D. K. (2003). Sequence stratigraphic significance of sedimentary cycles and shell concentrations in the Upper Jurassic-Lower Cretaceous of Kachchh, western India. Palaeogeography, Palaeoclimatology, Palaeoecology, 193(2), 285–309.

    Google Scholar 

  • Glover, C. P., & Kidwell, S. M. (1993). Influence of organic matrix on the postmortem destruction of molluscan shells. Journal of Geology, 101(6), 729–747.

    Google Scholar 

  • Gnoli, M. (2003). Northern Gondwanan Siluro-Devonian palaeogeography assessed by cephalopods. Palaeontologia Electronica, 5(2), 1–19.

    Google Scholar 

  • Green, G. W., & Welch, F. B. A. (1965). Geology of the country around Wells and Cheddar. London: HMSO.

    Google Scholar 

  • Green, M. A., JM, E., Boudreau, C. L., Moore, R. L., & Westman, B. A. (2004). Dissolution mortality of juvenile bivalves in coastal marine deposits. Limnology and Oceanography, 49, 727–734.

    Google Scholar 

  • Hardie, L. A. (1996). Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 my. Geology, 24(3), 279–283.

    Google Scholar 

  • Harper, E. M. (1998). The fossil record of bivalve molluscs. In S. K. Donovan & C. R. C. Paul (Eds.), The adequacy of the fossil record. Chichester: Wiley.

    Google Scholar 

  • Harper, E. M., Palmer, T. J., & Alphey, J. R. (1997). Evolutionary response by bivalves to changing Phanerozoic sea-water chemistry. Geological Magazine, 134(3), 403–407.

    Google Scholar 

  • Hendry, J. P. (1993). Calcite cementation during bacterial manganese, iron and sulphate reduction in Jurassic shallow marine carbonates. Sedimentology, 40, 87–106.

    Google Scholar 

  • Hendry, J. P., Ditchfield, P. W., & Marshall, J. D. (1995). Two-stage neomorphism of Jurassic aragonitic bivalves: Implications for early diagenesis. Journal of Sedimentary Geology, A65(1), 214–224.

    Google Scholar 

  • Hendry, J. P., Trewin, N. H., & Fallick, A. E. (1996). Low Mg-calcite marine cement in Cretaceous turbidites: Origin, spatial distribution and relationship to sea-water chemistry. Sedimentology, 43, 877–900.

    Google Scholar 

  • Hendy, A. J. W., Kamp, P. J. J., & Vonk, A. J. (2006). Cool-water shell bed taphofacies from Miocene-Pliocene shelf sequences in New Zealand: Utility of taphofacies in sequence stratigraphic analysis. In H. M. Pedley & G. Carannante (Eds.), Cool-water carbonates. Geological Society Special Publication, 255, 283–305.

    Google Scholar 

  • Hoare, R. D., & Pojeta, J., Jr. (2006). Ordovician Polyplacophora (Mollusca) from North America. Journal of Paleontology, 80(3, Suppl II), 1–28.

    Google Scholar 

  • Hodges, P. (1987). Lower Lias (Lower Jurassic) Bivalvia from South Wales and adjacent areas. Unpublished Ph.D. thesis, University of Wales, Swansea.

    Google Scholar 

  • Holdaway, H. K., & Clayton, C. J. (1982). Preservation of shell microstructure in silicified brachiopods from the Upper Cretaceous Wilmington Sands of Devon. Geological Magazine, 119(4), 371–382.

    Google Scholar 

  • Holland, S. M., & Patzkowsky, M. E. (2004). Ecosystem structure and stability: Middle Upper Ordovician of central Kentucky, USA. Palaios, 19, 316–331.

    Google Scholar 

  • Jaanusson, V. (1966). Fossil brachiopods with probable aragonitic shell. Geologiska Föreningens i Stockholm Förhandlingar, 88, 279–281.

    Google Scholar 

  • Jaanusson, V., Skoglund, R., Laufeld, S. (1979). Lower Wenlock faunal and floral dynamics – Vattenfallet section, Gotland. Sveriges Geologiska Undersökning, Serie C, 762, 294 pp.

    Google Scholar 

  • James, N. P., Bone, Y., & Kyser, T. K. (2005). Where has all the aragonite gone? – Mineralogy of Holocene neritic cool-water carbonates, southern Australia. Journal of Sedimentary Research, 75(3), 454–463.

    Google Scholar 

  • Johnson, M. E. (1996). Stable cratonic sequences and a standard for Silurian eustasy. In B. E. Witzke, G. A. Ludvigsen, & J. Day (Eds.), Palaeozoic sequence stratigraphy: Views from the North American craton. Geological Society of America Special Papers 306, 203–211

    Google Scholar 

  • Johnston, P. A. (1993). Lower Devonian Pelecypoda from southeastern Australia. Association of Australasian Palaeontologists, Memoir, 14, 134 pp.

    Google Scholar 

  • Kenyon-Roberts, S. M. (1995). The petrography and distribution of some calcite sea hardgrounds. Unpubl Ph.D. thesis, University of Reading.

    Google Scholar 

  • Kidder, D. L., & Erwin, D. H. (2001). Secular distribution of biogenic silica through the Phanerozoic: comparison of silica-replaced fossils and bedded cherts at the series level. Journal of Geology, 109, 509–522.

    Google Scholar 

  • Kidwell, S. M. (1986). Taphonomic feedback in Miocene assemblages: testing the role of dead hard parts in benthic communities. Palaios, 1, 239–255.

    Google Scholar 

  • Kidwell, S. M. (1991). The stratigraphy of shell concentrations. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy: Releasing the data locked in the fossil record. New York: Plenum.

    Google Scholar 

  • Kidwell, S. M. (2005). Shell composition has no net impact on large-scale evolutionary patterns in mollusks. Science, 307(5711), 914–917.

    Google Scholar 

  • Kidwell, S. M., & Bosence, D. W. J. (1991). Taphonomy and time-averaging of marine shelly faunas. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy: Releasing the data locked in the fossil record. New York: Plenum.

    Google Scholar 

  • Kidwell, S. M., & Brenchley, P. J. (1994). Patterns in bioclastic accumulation through the Phanerozoic – changes in input or in destruction. Geology, 22(12), 1139–1143.

    Google Scholar 

  • Kidwell, S. M., & Brenchley, P. J. (1996). Evolution of the fossil record; thickness trends in marine skeletal accumulations and their implications. In D. Jablonski, D. H. Erwin, & J. H. Lipps (Eds.), Evolutionary paleobiology. Chicago: University of Chicago Press.

    Google Scholar 

  • Kidwell, S. M., Best, M. M. R., & Kaufman, D. S. (2005). Taphonomic trade-offs in tropical marine death assemblages: Differential time averaging, shell loss, and probable bias in siliciclastic vs. carbonate facies. Geology, 33(9), 729–732.

    Google Scholar 

  • Kier, P. (1977). The poor fossil record of the regular echinoid. Paleobiology, 3, 168–174.

    Google Scholar 

  • King, A. H. (1990). Lower and Middle Ordovician Cephalopoda of Baltoscandia. Unpubl. Ph.D. thesis, University of Wales, Swansea.

    Google Scholar 

  • Knoerich, A. C., & Mutti, M. (2006). Missing aragonitic biota and the diagenetic evolution of heterozoan carbonates: A case study from the Oligo-Miocene of the central Mediterranean. Journal of Sedimentary Research, 76(5–6), 871–888.

    Google Scholar 

  • Kříž, J. (1992). Silurian field excursions: Prague Basin (Barrandian), Bohemia. National Museum Wales, Geology Series, 13, 1–111.

    Google Scholar 

  • Krystyn, L., Richoz, S., Baud, A., & Twitchett, R. J. (2003). A unique Permian–Triassic boundary section from the Neotethyan Hawasina Basin, Central Oman Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology, 191, 329–344.

    Google Scholar 

  • Ku, T. C. W., Walter, L. M., Coleman, M. L., Blake, R. E., & Martini, A. M. (1999). Coupling between sulfur recycling and syndepositional carbonate dissolution: Evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, USA. Geochimica et Cosmochimica Acta, 63, 2529–2546.

    Google Scholar 

  • Laufeld, S., & Jeppsson, L. (1976). Silicification and bentonites in the Silurian of Gotland. Geologiska Föreningens i Stockholm Förhandlingar, 98(1), 31–44.

    Google Scholar 

  • Li, X., & Droser, M. L. (1997). Nature and distribution of Cambrian shell concentrations: Evidence from the Basin and Range Province of the Western United States (California, Nevada, and Utah). Palaios, 12(2), 111–126.

    Google Scholar 

  • Li, X., & Droser, M. L. (1999). Lower and Middle Ordovician shell beds from the Basin and Range Province of the Western United States (California, Nevada, and Utah). Palaios, 14(3), 215–233.

    Google Scholar 

  • Liljedahl, L. (1983). Two silicified bivalves from Gotland. Sveriges Geologiska Undersökning, Serie C, 799, 51 pp.

    Google Scholar 

  • Liljedahl, L. (1984). Silurian silicified bivalves from Gotland. Sveriges Geologiska Undersökning, Serie C, 804, 1–82.

    Google Scholar 

  • Liljedahl, L. (1985). Ecological aspects of a silicified bivalve fauna from the Silurian of Gotland. Lethaia, 18(1), 53–66.

    Google Scholar 

  • Locklair, R. E., & Lerman, A. (2005). A model of Phanerozoic cycles of carbon and calcium in the global ocean: Evaluation and constraints on ocean chemistry and input fluxes. Chemical Geology, 217(1–2), 113–126.

    Google Scholar 

  • Lowenstam, H. A., & Weiner, S. (1989). On biomineralization. New York: Oxford University Press.

    Google Scholar 

  • Maliva, R. G., Knoll, A. H., & Siever, R. (1989). Secular change in chert distribution: A reflection of evolving biological participation in the silica cycle. Palaios, 4, 519–532.

    Google Scholar 

  • Martill, D.M., & Hudson, J.D. (1991). Fossils of the Oxford Clay. Palaeontological Association Field Guide to Fossils 4.

    Google Scholar 

  • Martill, D. M., Taylor, M. A., & Duff, K. L. (1994). The trophic structure of the Peterborough Member, Oxford Clay Formation (Jurassic), UK. Journal of the Geological Society of London, 151(1), 173–194.

    Google Scholar 

  • Martin, R. E. (1999). Taphonomy: A process approach. Cambridge Paleobiology Series 4. Cambridge: Cambridge University Press.

    Google Scholar 

  • Melim, L. A., Westphal, H., Swart, P. K., Eberli, G. P., & Munnecke, A. (2002). Questioning carbonate diagenetic paradigms: evidence from the Neogene of the Bahamas. Marine Geology, 185(1–2), 27–53.

    Google Scholar 

  • Melim, L. A., Swart, P. K., & Eberli, G. P. (2004). Mixing-zone diagenesis in the subsurface of Florida and The Bahamas. Journal of Sedimentary Research, 74(6), 904–913.

    Google Scholar 

  • Mitchell, M. (1987). The fossil collection of C.B. Salter from Cliff Quarry, Compton Martin, Mendip Hills. Geological Curator, 4(8), 487–491.

    Google Scholar 

  • Morse, J. W., & MacKensie, F. T. (1990). Geochemistry of sedimentary carbonates. Developments in sedimentology 48. New York: Elsevier.

    Google Scholar 

  • Morse, J. W., Zullig, J. J., Bernstein, L. D., Millero, F. J., Milne, P., Mucci, A., et al. (1985). Chemistry of calcium-rich shallow water sediments in the Bahamas. American Journal of Science, 285, 147–185.

    Google Scholar 

  • Munnecke, A., & Samtleben, C. (1996). The formation of micritic limestones and the development of limestone-marl alternations in the Silurian of Gotland, Sweden. Facies, 34, 159–176.

    Google Scholar 

  • Munnecke, A., Westphal, H., Reijmer, J. J. G., & Samtleben, C. (1997). Microspar development during early marine burial diagenesis: a comparison of Pliocene carbonates from the Bahamas with Silurian limestones from Gotland (Sweden). Sedimentology, 44(6), 977–990.

    Google Scholar 

  • Nelson, C. S., Winefield, P. R., Hood, S. D., Caron, V., Pallentin, A., & Kamp, P. J. J. (2003). Pliocene Te Aute limestones, New Zealand: expanding concepts for cool-water shelf carbonates. New Zealand Journal of Geology and Geophysics, 46, 407–424.

    Google Scholar 

  • Noe-Nygaard, N., Surlyk, F., & Piasecki, S. (1987). Bivalve mass mortality caused by toxic dinoflagellate blooms in a Berriasian-Valanginian lagoon, Bornholm Denmark, Palaios, 2, 263–273.

    Google Scholar 

  • Novack-Gottshall, P. M., & Miller, A. I. (2003). Comparative geographic and environmental diversity dynamics of gastropods and bivalves during the Ordovician Radiation. Paleobiology, 29(4), 576–604.

    Google Scholar 

  • Nützel, A., & Schulbert, C. (2005). Facies of two important Early Triassic gastropod lagerstatten: implications for diversity patterns in the aftermath of the end-Permian mass extinction. Facies, 51, 495–515.

    Google Scholar 

  • Orr, P. J. (2003). Ecospace utilization in early Phanerozoic deep-marine environments: Deep bioturbation in the Blakely Sandstone (Middle Ordovician), Arkansas, USA. Lethaia, 36(2), 97–106.

    Google Scholar 

  • Oschmann, W. (1988). Kimmeridge clay sedimentation – A new cyclic model. Palaeogeography, Palaeoclimatology, Palaeoecology, 65(3–4), 217–251.

    Google Scholar 

  • Oschmann, W. (1991). Distribution, dynamics and palaeoecology of Kimmeridgian (Upper Jurassic) shelf anoxia in western Europe. In R. V. Tyson & T. H. Pearson (Eds.), Modern and ancient continental shelf anoxia. Geological Society London, Special Publication, 58, 381–395.

    Google Scholar 

  • Oschmann, W. (1993). Environmental oxygen fluctuations and the adaptive response of marine benthic organisms. Journal of the Geological Society of London, 150, 187–191.

    Google Scholar 

  • Palmer, T. J., & Wilson, M. A. (2004). Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas. Lethaia, 37(4), 417–427.

    Google Scholar 

  • Palmer, T. J., Hudson, J. D., & Wilson, M. A. (1988). Paleoecological evidence for early aragonite dissolution in ancient calcite seas. Nature, 335(6193), 809–810.

    Google Scholar 

  • Pojeta, J., Jr. (1971). Review of Ordovician pelecypods. U.S. Geological Survey Professional Papers 695.

    Google Scholar 

  • Porter, S. M. (2007). Seawater chemistry and early carbonate biomineralization. Science, 316(5829), 1302.

    Google Scholar 

  • Powell, E. N., Callender, W. R., Staff, G. M., Parsons-Hubbard, K. M., Brett, C. E., Walker, S. E., et al. (2008). Molluscan shell condition after eight years on the sea floor - taphonomy in the Gulf of Mexico and Bahamas. Journal of Shellfish Research, 27(1), 191–225.

    Google Scholar 

  • Radley, J. D., & Barker, M. J. (2000). Palaeoenvironmental significance of storm coquinas in a Lower Cretaceous coastal lagoonal succession, Vectis Formation, Isle of Wight, southern England. Geological Magazine, 137, 193–205.

    Google Scholar 

  • Ratter, V. A., & Cope, J. C. W. (1998). New Silurian neotaxodont bivalves from South Wales and their phylogenetic significance. Palaeontology, 41, 975–991.

    Google Scholar 

  • Riding, R., & Liang, L. (2005). Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1–2), 101–115.

    Google Scholar 

  • Ries, J. B. (2005). Aragonite production in calcite seas: Effect of seawater Mg/Ca ratio on the calcification and growth of the calcareous alga Penicillus capitatus. Paleobiology, 31, 449–462.

    Google Scholar 

  • Rollins, H. B., Eldredge, N., & Spiller, J. (1971). Gastropoda and Monoplacophora of the Solsville Member, Middle Devonian Marcellus Formation in the Chenango valley, NewYork State. Bulletin of the American Museum of Natural History, 144(2), 133–170.

    Google Scholar 

  • Rude, P. D., & Aller, R. C. (1991). Fluorine mobility during early diagenesis of carbonate sediment: An indicator of mineral transformations. Geochimica et Cosmochimica Acta, 55, 2491–2509.

    Google Scholar 

  • Runnegar, B., & Bentley, C. (1983). Anatomy, ecology and affinities of the Australian Early Cambrian bivalve Pojetaia runnegari Jell. Journal of Paleontology, 57(1), 73–92.

    Google Scholar 

  • Sandberg, P. A. (1983). An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305(5929), 19–22.

    Google Scholar 

  • Sanders, D. (2001). Burrow-mediated carbonate dissolution in rudist biostromes (Aurisina, Italy): Implications for taphonomy in tropical, shallow subtidal carbonate environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 168(1–2), 39–74.

    Google Scholar 

  • Sanders, D. (2003). Syndepositional dissolution of calcium carbonate in neritic carbonate environments: Geological recognition, processes, potential significance. Journal of African Earth Sciences, 36, 99–134.

    Google Scholar 

  • Sanders, D. (2004). Potential significance of syndepositional carbonate dissolution for platform banktop aggradation and sediment texture: A graphic modeling approach. Austrian Journal of Earth Science, 95(96), 71–79.

    Google Scholar 

  • Schulbert, J. K., Kidder, D. L., & Erwin, D. H. (1997). Silica-replaced fossils through the Phanerozoic. Geology, 25(11), 1031–1034.

    Google Scholar 

  • Sepkoski, J. J. (1984). A kinetic-model of Phanerozoic taxonomic diversity. 3. Post-Paleozoic families and mass extinctions. Paleobiology, 10(2), 246–267.

    Google Scholar 

  • Smith, A. M., & Nelson, C. S. (2003). Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits. Earth Science Reviews, 63(1–2), 1–31.

    Google Scholar 

  • Speyer, S. E., & Brett, C. E. (1991). Taphofacies controls: Background and episodic processes in fossil assemblage preservation. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy: Releasing the data locked in the fossil record. New York: Plenum.

    Google Scholar 

  • Stanley, S. M. (2006). Influence of seawater chemistry on biomineralization throughout Phanerozoic time: Paleontological and experimental evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 214–236.

    Google Scholar 

  • Stanley, S. M., & Hardie, L. A. (1998). Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144, 3–19.

    Google Scholar 

  • Talent, J. A., Mawson, R., Aitchison, J. C., Becker, R. T., Bell, K. N., Bradshaw, M. A., Burrow, C. J., Cook, A. G., Dargan, G. M., Douglas, J. G., Edgecombe, G. D., Feist, M., Jones, P. J., Long, J. A., Phillips-Ross, J. R., Pickett, J. W., Playford, G., Rickards, R. B., Webby, B. D., Winchester-Seeto, T., Wright, A. J., Young, G. C., & Zhen, Y.-Y. (2000). Devonian palaeobiogeography of Australia and adjoining regions. In A. J. Wright, G. C. Young, J. A. Talent, & J. R. Laurie (Eds.), Palaeobiogeography of Australasian faunas and floras. Association of Australasian Palaeontologists, Memoir, 23 167–258.

    Google Scholar 

  • Tassell, C. B. (1982). Gastropods from the Early Devonian ‘Receptaculites’ Limestone, Taemas, New South Wales. Records of the Queen Victoria Museum, Launceston, 77, 1–59.

    Google Scholar 

  • Taylor, J. D., Kennedy, W. J., & Hall, A. (1969). The shell structure and mineralogy of the Bivalvia: Introduction, Nuculacea–Trigonacea. Bulletin of British Museum Natural History London, 3, 1–125.

    Google Scholar 

  • Tedesco, L. P., & Aller, R. C. (1997). 210Pb chronology of sequences affected by burrow excavation and infilling: Examples from shallow marine carbonate sediment sequences, Holocene South Florida and Caicos Platform, British West Indies. Journal of Sedimentary Research, 67, 36–46.

    Google Scholar 

  • Tsujita, C. J., Brett, C. E., Topor, M., & Topor, J. (2006). Evidence of high-frequency storm disturbance in the Middle Devonian Arkona Shale, southwestern Ontario. Journal of Taphonomy, 4(2), 49–68.

    Google Scholar 

  • Valentine, J. W., Jablonski, D. S., & Roy, K. (2006). Assessing the fidelity of the fossil record by using marine bivalves. Proceedings of the National Academy of Sciences OF the United States of America, 103, 6599–6604.

    Google Scholar 

  • Walker, K. R., & Diehl, W. W. (1985). The role of marine cementation in the preservation of Lower Palaeozoic assemblages. Philosophical Transactions of the Royal Society London B, 311, 143–153.

    Google Scholar 

  • Walter, L. M., & Burton, E. A. (1990). Dissolution of platform carbonate sediments in marine pore fluids. American Journal of Science, 290, 601–643.

    Google Scholar 

  • Walter, L. M., Bischof, S. A., Patterson, W. P., & Lyons, T. W. (1993). Dissolution and recrystallization in modern shelf carbonates – Evidence from pore-water and solid-phase chemistry. Philosophical Transactions of the Royal Society London B, 344(1670), 27–36.

    Google Scholar 

  • Watkins, R. (1996). Skeletal composition of Silurian benthic marine faunas. Palaios, 11(6), 550–558.

    Google Scholar 

  • Watkins, R. (2000). Silurian reef-dwelling brachiopods and their ecologic implications. Palaios, 15, 112–119.

    Google Scholar 

  • Webby, B. D., & Percival, I. G. (1983). Ordovician trimerellacean brachiopod shell beds. Lethaia, 16, 215–232.

    Google Scholar 

  • Westphal, H., & Munnecke, A. (2003). Limestone-marl alternations: A warm-water phenomenon? Geology, 31(3), 263–266.

    Google Scholar 

  • Wheeley, J. R., & Twitchett, R. J. (2005). Palaeoecological significance of a new Griesbachian (Early Triassic) gastropod assemblage from Oman. Lethaia, 38(1), 37–45.

    Google Scholar 

  • Wheeley, J. R., Cherns, L., & Wright, V. P. (2008). Provenance of microcrystalline carbonate cement in limestone–marl alternations (LMA): Aragonite mud or molluscs? Journal of the Geological Society London, 165(1), 395–403.

    Google Scholar 

  • Wilby, P. R., Hudson, J. D., Clements, R. G., & Hollingworth, N. T. J. (2004). Taphonomy and origin of an accumulate of soft-bodied cephalopods in the Oxford Clay Formation (Jurassic, England). Palaeontology, 47(5), 1159–1180.

    Google Scholar 

  • Wilcox, C. J., & Lockley, M. G. (1981). A reassessment of facies and faunas in the type Llandeilo (Ordovician), Wales. Palaeogeography, Palaeoclimatology, Palaeoecology, 34(3–4), 285–314.

    Google Scholar 

  • Williams, A., Lockley, M. G., & Hurst, J. M. (1981). Benthic palaeocommunities represented in the Ffairfach Group and coeval Ordovician successions of Wales. Palaeontology, 24(4), 661–694.

    Google Scholar 

  • Wright, V. P., & Cherns, L. (2004). Are there ‘black holes’ in carbonate deposystems? Geologica Acta, 2, 285–290.

    Google Scholar 

  • Wright, V. P., Cherns, L., & Hodges, P. (2003). Missing molluscs: Field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology, 31(3), 211–214.

    Google Scholar 

Download references

Acknowledgments

We thank Carl Brett (University of Cincinnati) and Peter Allison (Imperial College, London) for constructive reviews of the original manuscript. JRW is grateful to Robert Raine (University of Birmingham) for help in collecting Jurassic Saltford Shale material, and for discussion on the origins of these shell beds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley Cherns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cherns, L., Wheeley, J.R., Wright, V.P. (2011). Taphonomic Bias in Shelly Faunas Through Time: Early Aragonitic Dissolution and Its Implications for the Fossil Record. In: Allison, P.A., Bottjer, D.J. (eds) Taphonomy. Aims & Scope Topics in Geobiology Book Series, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8643-3_3

Download citation

Publish with us

Policies and ethics