Skip to main content
Book cover

Taphonomy pp 519–567Cite as

Evolutionary Trends in Remarkable Fossil Preservation Across the Ediacaran–Cambrian Transition and the Impact of Metazoan Mixing

  • Chapter
  • First Online:

Part of the book series: Aims & Scope Topics in Geobiology Book Series ((TGBI,volume 32))

Abstract

A unifying model is presented that explains most of the major changes seen in fossil preservation and redox conditions across the Precambrian–Cambrian transition. It is proposed that the quality of cellular and tissue preservation in Proterozoic and Cambrian sediments is much higher than it is in more recent marine deposits. Remarkable preservation of cells and soft tissues occurs in Neoproterozoic to Cambrian cherts, phosphates, black shales, siliciclastic sediments and carbonates across a wide range of environmental conditions. The conditions for remarkable preservation were progressively restricted to more marginal environments through time, such as those now found in stagnant lakes or beneath upwelling zones. These paradoxes can no longer be adequately explained by recourse to a series of ad hoc explanations, such as those involving unusually tough organic matter in the Ediacaran, or unusual seawater chemistry, or even the role of microbial biofilms alone. That is because the exceptions to these are now too many. Instead, we suggest that elevated pore water ion concentrations, coupled with the almost complete lack of infaunal bioturbation, and hence the lack of a sediment Mixed-layer, provided an ideal environment for microbially-mediated ionic concentrations at or near the sediment–water interface. These strong ionic gradients encouraged early cementation and lithification of sediments, often prior to complete decomposition of delicate organic structures. Seen in this way, not only did the biosphere evolve across the Precambrian–Cambrian transition. Fossilization itself has evolved through time, and never more dramatically so than across this interval.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alessandrello, A., & Bracchi, G. (2003). Eldonia berbera n. sp., a new species of the enigmatic genus Eldonia Walcott, 1911 from the Rawtheyan (Upper Ordovician) of Anti-Atlas (Erfoud, Tafilalt, Morocco). Atti della Società italiana di scienze naturali e del museo civico di storia naturale di Milano, 144(2), 337–358.

    Google Scholar 

  • Aller, R. C. (1978). Experimental studies of changes produced by deposit feeders on pore water, sediment and overlying water chemistry. American Journal of Science, 278, 1185–1234.

    Google Scholar 

  • Aller, R. C. (1982). The effects of macrobenthos on chemical properties of marine sediments and overlying water. In P. L. McCall & M. J. S. Tevesz (Eds.), Animal-sediment relations (pp. 53–102). New York: Plenum.

    Google Scholar 

  • Aller, R. C. (1984). The importance of relict burrow structure and burrow irrigation in controlling sedimentary solute distributions. Geochimica et Cosmochimica Acta, 48, 1929–1934.

    Google Scholar 

  • Aller, R. C. (1994). Bioturbation and remineralization of sedimentary organic matter: Effects of redox oscillations. Chemical Geology, 114, 331–345.

    Google Scholar 

  • Allison, P. A. (1988). Phosphatized soft-bodied squids from the Jurassic Oxford Clay. Lethaia, 21, 403–410.

    Google Scholar 

  • Allison, P. A., & Brett, C. E. (1995). In situ benthos and paleo-oxygenation in the Middle Cambrian Burgess Shale. Geology, 23(12), 1079–1082.

    Google Scholar 

  • Allison, P. A., & Briggs, D. E. G. (1991). Taphonomy of nonmineralized tissues. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy: Releasing the data locked in the fossil record (pp. 25–70). New York: Plenum.

    Google Scholar 

  • Altermann, W., Kazmierczak, J., Oren, A., & Wright, D. T. (2006). Cyanobacterial calcification and its rock-building potential during 3.5 billion years of earth history. Geobiology, 4, 147–166.

    Google Scholar 

  • Amthor, J. E., Ramseyer, K., Faulkner, T., & Lucas, P. (2005). Stratigraphy and sedimentology of a chert reservoir at the Precambrian-Cambrian boundary: the Al Shomou Silicilyte, South Oman Salt Basin. GeoArabia, 10, 89–122.

    Google Scholar 

  • Antcliffe, J. B., & Brasier, M. D. (2007). Charnia at fifty: new evolutionary models for Ediacaran fronds. Palaeontology, 51(1), 11–26.

    Google Scholar 

  • Arena, D. A. (2008). Exceptional preservation of plants and invertebrates by phosphatization, Riversleigh, Australia. Palaios, 23(7), 495–502.

    Google Scholar 

  • Arnold, C. A. (1931). On Callixylon newberryi (Dawson) Elkins et Wieland. Contributions from the Museum of Paleontology of the University of Michigan, 3(12), 207–232.

    Google Scholar 

  • Arp, G., Reimer, A., & Reitner, J. (2001). Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science, 292, 1701–1704.

    Google Scholar 

  • Babcock, L. E., Zhang, W., & Leslie, S. A. (2001). The Chengjiang biota: record of the Early Cambrian diversification of life and clues to exceptional preservation of fossils. GSA Today, 11(2), 4–9.

    Google Scholar 

  • Bailey, R. H. (2002). Microbially induced sedimentary structures and preservation of Ediacaran-like fossils in the Boston Bay Group, Massachusetts. Abstract, Geological Society of America, Denver Meeting, Paper No. 187–133.

    Google Scholar 

  • Bailey, J. V., Corsetti, F. A., Bottjer, D. J., & Marenco, K. N. (2006). Microbially-mediated environmental influences on metazoan colonization of matground ecosystems: evidence from the Lower Cambrian Harkless Formation. Palaios, 21, 215–226.

    Google Scholar 

  • Bailey, J. V., Joye, S. B., Kalanetra, K. M., Flood, B. E., & Corsetti, F. A. (2007). Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature, 445, 198–201.

    Google Scholar 

  • Barghoorn, E., & Tyler, S. (1965). Microfossils from the Gunflint chert. Science, 147, 563–577.

    Google Scholar 

  • Basinger, J. F., & Rothwell, G. W. (1977). Anatomically preserved plants from the Middle Eocene (Allenby Formation) of British Columbia. Canadian Journal of Botany, 55, 1984–1990.

    Google Scholar 

  • Bate, R. H. (1972). Phosphatised ostracods with appendages from the Lower Cretaceous of Brasil. Palaeontology, 15, 379–393.

    Google Scholar 

  • Bell, C. M., Angseesing, J. P. A., & Townsend, M. J. (2001). A Chondrophorine (Medusoid Hydrozoan) from the Lower Cretaceous of Chile. Palaeontology, 44(5), 1011–1023.

    Google Scholar 

  • Bengtson, S. (2004). Early skeletal fossils. In: J. H. Lipps and B. M. Waggoner (Eds.), Neoproterozoic-Cambrian biological revolutions (pp. 67–77). The Palaeontological Society Papers 10.

    Google Scholar 

  • Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A., & Runnegar, B. N. (1990). Early Cambrian fossils from South Australia. Memoirs of the Australasian Association of Palaeontologists, 9, 1–364.

    Google Scholar 

  • Bengtson, S., & Zhao, Y. (1997). Fossilized metazoan embryos from the earliest Cambrian. Science, 277, 1645–1648.

    Google Scholar 

  • Bjerrum, C. J., & Canfield, D. E. (2002). Ocean productivity before about 1.9Ga limited by phosphorous adsorption onto iron oxides. Nature, 417, 159–162.

    Google Scholar 

  • Bland, B. H. (1984). Arumberia Glaessner & Walter, a review of its potential for correlation in the region of the Precambrian–Cambrian boundary. Geological Magazine, 121(6), 625–633.

    Google Scholar 

  • Bottjer, D. J., Hagadorn, J. W., & Dornbos, S. Q. (2000). The Cambrian substrate revolution. GSA Today, 10(9), 1–7.

    Google Scholar 

  • Brasier, A. T., Andrews, J. E., Marca-Bell, A. D. & Dennis, P. F. (2009). Depositional continuity of seasonally laminated tufas. Implications for d 18O based seasonal temperatures. Global and Planetary Change, 71, 160–167.

    Google Scholar 

  • Brasier, M. D. (1977). An early Cambrian chert biota and its implications. Nature, 268, 719–720.

    Google Scholar 

  • Brasier, M. D. (1979). The Cambrian radiation event. In: M. R. House (Ed.), The origin of major invertebrate groups (pp. 103–159). The Systematics Association Special Volume No. 12. London: Academic.

    Google Scholar 

  • Brasier, M. D. (1986). Why do lower plants and animals biomineralize? Palaeobiology, 12(3), 241–250.

    Google Scholar 

  • Brasier, M. D. (1989). China and the palaeotethyan belt (India, Pakistan, Iran, Kazakhstan, and Mongolia). In: J. W. Cowie and M. D. Brasier (Eds.), The Precambrian–Cambrian boundary (pp. 40–74). Oxford Monographs on Geology and Geophysics No. 12. Oxford: Oxford University Press.

    Google Scholar 

  • Brasier, M. D. (1990). Phosphogenic events and skeletal preservation across the Precambrian–Cambrian boundary interval. In: A. G. Norholt and I. Jarvis (Eds.), Phosphorite research and development (289–303). Special Publication of the Geological Society of London 52(V).

    Google Scholar 

  • Brasier, M. D. (1992a). Nutrient-enriched waters and the early skeletal fossil record. Journal of the Geological Society of London, 149(4), 621–629.

    Google Scholar 

  • Brasier, M. D. (1992b). Palaeoceanography and changes in the biological cycling of phosphorus across the Precambrian–Cambrian boundary. In J. Lipps & P. Signor (Eds.), Origins of the Metazoa (pp. 483–523). New York: Plenum.

    Google Scholar 

  • Brasier, M. D. (1995). Fossil indicators of nutrient levels. 1: Eutrophication and climate change. In: D. J. W. Bosence and P. A. Allison (Eds.), Marine micropalaeontological analysis from fossils (pp. 113–132). Geol. Soc. London Spec. Publ., 83.

    Google Scholar 

  • Brasier, M. D. (2009). Dawrin’s Lost World. The hidden history of animal life. Oxford: Oxford University Press. 304 pp.

    Google Scholar 

  • Brasier, M. D., Anderson, M. M., & Corfield, R. M. (1992). Oxygen- and carbon-isotope stratigraphy of early Cambrian carbonates in southeastern Newfoundland and England. Geological Magazine, 129, 265–279.

    Google Scholar 

  • Brasier, M. D., & Antcliffe, J. B. (2004). Decoding the Ediacaran Enigma. Science, 305, 1115–1117.

    Google Scholar 

  • Brasier, M. D., & Antcliffe, J. B. (2008). Dickinsonia from Ediacara: A new look at morphology and body construction. Palaeogeography, Palaeoclimatology, Palaeoecology, 270(3–4), 311–323.

    Google Scholar 

  • Brasier, M. D., & Antcliffe, J. B. (2009). Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis. Journal of the Geological Society, London, 166, 363–384.

    Google Scholar 

  • Brasier, M. D., & Callow, R. H. T. (2007). Changes in the patterns of phosphatic preservation across the Proterozoic–Cambrian transition. Memoirs of the Association of Australasian Palaeontologists, 34, 377–389.

    Google Scholar 

  • Brasier, M. D., Callow, R. H. T., Menon, L. R. and Liu, A. G. (2009b). Osmotrophic biofilms: from modern to ancient. In: J. Seckbach (Ed.), Microbial mats. Berlin: Springer-Verlag.

    Google Scholar 

  • Brasier, M. D., Cowie, J. W., & Taylor, M. E. (1994). Decision on the Precambrian–Cambrian boundary stratotype. Episodes, 17, 3–8.

    Google Scholar 

  • Brasier, M. D., Green, O. R., & Shields, G. (1997). Ediacaran sponge spicule clusters fom southwestern Mongolia and the origins of the Cambrian fauna. Geology, 25(4), 303–306.

    Google Scholar 

  • Brasier, M. D., Perejon, A., & De San Jose, M. A. (1979). Discovery of an important fossiliferous Precambrian–Cambrian sequence in Spain. Estudios Geológicos, 35, 379–383.

    Google Scholar 

  • Brasier, M. D., Shields, G., Kuleshov, V., & Zhegallo, E. A. (1996). Integrated chemo- and biostratigraphic correlation of early animal evolution: Neoproterozoic–Early Cambrian of southwest Mongolia. Geological Magazine, 133(4), 445–485.

    Google Scholar 

  • Briggs, D. E. G., Bottrell, S. H., & Raiswell, R. (1991). Pyritization of soft-bodied fossils: Beecher’s Trilobite Bed, Upper Ordovician, New York State. Geology, 19, 1221–1224.

    Google Scholar 

  • Briggs, D. E. G., & Crowther, P. (2001). Palaeobiology II. Blackwell Science: Oxford. 583 pp.

    Google Scholar 

  • Briggs, D. E. G., Erwin, D., & Collier, F. J. (1993). Fossils of the Burgess Shale of British Columbia. Washington, DC: Smithsonian Institution. 238 pp.

    Google Scholar 

  • Briggs, D. E. G., Moore, R. A., Shultz, J. W., & Schweigert, G. (2005). Mineralization of soft-part anatomy and invading microbes in the horseshoe crab Mesolimulus from the Upper Jurassic lagerstätte of Nusplingen Germany. Proceedings of the Royal Soceity B, 272, 627–632.

    Google Scholar 

  • Bromley, R., & Ekdale, A. A. (1984). Chondrites: a trace fossil indicator of anoxia in sediments. Science, 224, 872–874.

    Google Scholar 

  • Burdige, D. J. (2006). Geochemistry of marine sediments. Princeton: Princeton University Press. 630 p.

    Google Scholar 

  • Butterfield, N. J. (2001). Cambrian food webs. In: D. E. G. Briggs & P. R. Crowther (Eds.), Palaeobiology II (pp. 40–43). Oxford: Blackwell Science.

    Google Scholar 

  • Butterfield, N. (2002). Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology, 28(1), 155–171.

    Google Scholar 

  • Butterfield, N. J. (2003). Exceptional fossil preservation and the Cambrian explosion. Integrative and Comparative Biology, 43, 166–177.

    Google Scholar 

  • Butterfield, N. J. (2007). Macroevolution and macroecology through deep time. Palaeontology, 50(1), 41–55.

    Google Scholar 

  • Butterfield, N. J., & Nicholas, C. J. (1996). Burgess Shale-type preservation of both non-mineralizing and ‘shelly’ Cambrian organisms from the Mackenzie Mountains, northwestern Canada. Journal of Paleontology, 70(6), 893–899.

    Google Scholar 

  • Butuzova, G. Yu., Drits, V. A., Morozov, A. A., & Gorschov, A. I. (1990). Processes of formation of iron-manganese oxyhydroxides in the Atlantic-II and Thetis Deeps of the Red Sea. In: J. Parnell, Y. Lianjun, & C. Changming (Eds.), Sediment-hosted mineral deposits (pp. 57–72). International Association of Sedimentolgists Special Publication, 11.

    Google Scholar 

  • Callow, R. H. T., & Brasier, M. D. (2009a). A solution to Darwin’s dilemma of 1859: exceptional preservation in Salter’s material from the late Ediacaran Longmyndian Supergroup, England. Journal of Geological Society, London, 166(1), 1–4.

    Google Scholar 

  • Callow, R. H. T., & Brasier, M. D. (2009b). Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: implications for Ediacaran taphonomic models. Earth-Science Reviews, 96, 207–219.

    Google Scholar 

  • Cameron, B. (1985). Discovery of silicified lacustrine microfossils and stromatolites: Triassic-Jurassic Fundy Group, Nova Scotia. Geological Society of America. Abstracts with Programs, 17, 98.

    Google Scholar 

  • Campbell, J. A. (1970). Stratigraphy of the Chaffee Group (Upper Devonian) west-central Colorado. American Association of Petroleum Geologists Bulletin, 54, 313–325.

    Google Scholar 

  • Canfield, D. E., Poulton, S. W., & Narbonne, G. M. (2007). Late-Neoproterozoic deep-ocean oxidation and the rise of animal life. Science, 315, 92–95.

    Google Scholar 

  • Carson, G. A. (1991). Silicification of fossils. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy: releasing the data locked in the fossil record (pp. 455–499). New York: Plenum Press.

    Google Scholar 

  • Cheng, H., & Liu, J. (2004). Fossil embryos from the Middle and Late Cambrian period of Hunan, south China. Nature, 427, 237–240.

    Google Scholar 

  • Cohen, P. A., Bradley, A., Knoll, A. H., Grotzinger, J. P., Jensen, S., Abelson, J., et al. (2009). Tubular compression fossils from the Ediacaran Nama Group, Namibia. Journal of Paleontology, 83(1), 110–122.

    Google Scholar 

  • Compton, J., Mallinson, D., Glenn, C. R., Filipelli, G., Föllmi, K., Shields, G., et al. (2000). Variations in the global phosphorus cycle. SEPM. Special Publication, 46, 21–33.

    Google Scholar 

  • Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., & Jin, Y. (2005). U-Pb ages for the Neoproterozoic Doushantuo Formation, China. Science, 308, 95–98.

    Google Scholar 

  • Conway-Morris, S., & Grazhdankin, D. (2005). Enigmatic worm-like organisms from the Upper Devonian of New York: an apparent example of Ediacaran-like preservation. Palaeontology, 48(2), 395–410.

    Google Scholar 

  • Cook, P. J., & Shergold, J. H. (1984). Phosphorus, phosphorites and skeletal evolution at the Precambrian–Cambrian boundary. Nature, 308, 231–236.

    Google Scholar 

  • Crimes, T. P., & McIlroy, D. (1999). A biota of Ediacaran aspect from Lower Cambrian strata on the Digermul Peninsular, Arctic Norway. Geological Magazine, 136(6), 633–642.

    Google Scholar 

  • Dong, X., Donoghue, P. C. J., Liu, Z., Liu, J., & Peng, F. (2005). The fossils of Orsten-type preservation from Middle and Upper Cambrian in Hunan, China – Three dimensionally preserved soft-bodied fossils (arthropods). Chinese Science Bulletin, 50(13), 1352–1357.

    Google Scholar 

  • Dong, L., Xiao, S., Shen, B., & Zhou, C. (2008). Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: tentative phylogenetic interpretation and implications for evolutionary stasis. Journal of the Geological Society, London, 165(1), 367–378.

    Google Scholar 

  • Donoghue, P. C. J., Bengtson, S., Dong, X., Gostling, N. J., Huldtgren, T., Cunningham, J. A., et al. (2006). Synchrotron X-ray tomographic microscopy of fossil embryos. Nature, 442, 680–683.

    Google Scholar 

  • Donoghue, P. C. J., Kouchinsky, A., Waloszek, D., Bengtson, S., Dong, X., Val’kov, A. K., et al. (2006). Fossilized embryos are widespread but the record is temporally and taxonomically biased. Evolution & Development, 8(2), 232–238.

    Google Scholar 

  • Dornbos, S. Q., Droser, M. L., Gehling, J. G., & Jensen, S. (1999). When the worm turned: concordance of Early Cambrian ichnofabric and trace-fossil record in siliciclastic rocks of South Australia. Geology, 27(7), 625–628.

    Google Scholar 

  • Droser, M. J., Gehling, J. G., & Jensen, S. R. (2006). Assemblage palaeoecology of the Ediacara Biota: the unabridged edition. Palaeogeography Palaeoclimatology Palaeocology, 232, 131–147.

    Google Scholar 

  • Droser, M. J., Jensen, S., & Gehling, J. G. (2002). Trace fossils and substrates of the terminal Proterozoic-Cambrian transition: implications for the record of early bilaterians and sediment mixing. Proceedings of the National Academy of Sciences of the United States of America, 99, 12572–12576.

    Google Scholar 

  • Droser, M. J., Jensen, S., & Gehling, J. G. (2004). Development of early Cambrian ichnofabrics: evidence from shallow marine siliciclastics. In: D. McIlroy (Ed.), The application of ichnology to palaeoenvironmental and stratigraphic analysis (pp. 383–396). Geological Society of London, Special Publication 228.

    Google Scholar 

  • Dutta, S., Steiner, M., Banerjee, S., Erdtmann, B.-D., Jeevanjumar, S., & Mann, U. (2006). Chuaria circularis from the early Mesoproterozoic Suket Shale, Vindhyan Supergroup, India: Insights from light and electron microscopy and pyrolysis-gas chromatography. Journal of Earth System Science, 115(1), 99–112.

    Google Scholar 

  • Dzik, J. (2003). Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integrative and Comparative Biology, 43(1), 114–126.

    Google Scholar 

  • Dzik, J. (2005). Behavioral and anatomical unity of the earliest burrowing animals and the cause of the “Cambrian explosion”. Paleobiology, 31(3), 503–521.

    Google Scholar 

  • Fedonkin, M. A. (1990). Systematic description of the Vendian Metazoa. In: B. S. Sokolov & A. B. Iwanowski (Eds.), The Vendian System. Palaeontology (Vol. 1, pp. 71–120). Berlin: Springer-Verlag.

    Google Scholar 

  • Fedonkin, M. A. (2003). The origin of the Metazoa in the light of the Proterozoic fossil record. Paleontology Research, 7(1), 9–41.

    Google Scholar 

  • Fedonkin, M. A., Gehling, J. G., Grey, K., Narbonne, G. M., & Vickers-Rich, P. (2007). The rise of animals. Baltimore: The John Hopkins University Press, 326pp.

    Google Scholar 

  • Fedonkin, M. A., & Waggoner, B. M. (1997). The late Precambrian fossil Kimberella is a mollusc like bilaterian organism. Nature, 388, 868–871.

    Google Scholar 

  • Fedonkin, M. A., & Yochelson, E. L. (2002). Middle Proterozoic (1.5 Ga) Horodyskia moniliformis Yochelson and Fedonkin, the oldest known tissue-grade colonial Eukaryote. Smithosonian Contributions to Paleobiology, 94, 29 p.

    Google Scholar 

  • Feng, W., Chen, Z., & Sun, W. (2003). Diversification of skeletal microstructures of organisms from the interval from the latest Precambrian to the early Cambrian. Science in China (Series D), 46(10), 977–985.

    Google Scholar 

  • Feng, W., & Sun, W. (2003). Phosphate replicated and replaced microstructure of molluscan shells from the earliest Cambrian of China. Acta Palaeontologica Polonica, 48(1), 21–30.

    Google Scholar 

  • Fike, D. A., Grotzinger, J. P., Pratt, L. M., & Summons, R. E. (2006). Oxidation of the Ediacaran Ocean. Nature, 444, 744–747.

    Google Scholar 

  • Föllmi, K. (1996). The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Science Reviews, 40, 55–124.

    Google Scholar 

  • Ford, T. D., & Breed, W. J. (1973). Late Precambrian Chuar Group, Grand Canyon, Arizona. Geological Society of America Bulletin, 84, 1273–1260.

    Google Scholar 

  • Gabbott, S., Xian-guang, H., Norry, M., & Siveter, D. (2004). Preservation of Early Cambrian animals of the Chengjiang biota. Geology, 32(10), 901–904.

    Google Scholar 

  • Gaines, R. R., Kennedy, M. J., & Droser, M. L. (2005). A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah. Palaeogeogr. Palaeocl., 220, 193–205.

    Google Scholar 

  • Gehling, J. G. (1987). Earliest-known echinoderm – a new fossil from the Pound Subgroup of South Australia. Alcheringa, 11, 337–345.

    Google Scholar 

  • Gehling, J. G. (1991). The case for the Ediacaran fossil roots to the Metazoan Tree. Geological Society of India Memoir, 20, 181–224.

    Google Scholar 

  • Gehling, J. G. (1999). Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14, 40–57.

    Google Scholar 

  • Gehling, J. G., Droser, M. L., Jensen, S. R., & Runnegar, B. N. (2005). Ediacara organisms: relating form to function. In: D. E. G. Briggs (Ed.), Evolving form and function: fossils and development, Peabody Museum of Natural History, New Haven, 43–66.

    Google Scholar 

  • Gehling, J. G., Narbonne, G. M., & Anderson, M. M. (2000). The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology, 43, 427–456.

    Google Scholar 

  • Germs, G. J. B. (1972). New shelly fossils from Nama Group, South West Africa. American Journal of Science, 272, 752–761.

    Google Scholar 

  • Glaessner, M. F., & Wade, M. (1966). The late Precambrian fossils from Ediacara, South Australia. Palaeontology, 9(4), 599–628.

    Google Scholar 

  • Glaessner, M. F., & Walter, M. R. (1975). New Precambrian fossils from the Arumbera Sandstone, Northern Territory, Australia. Alcheringa, 1, 59–69.

    Google Scholar 

  • Gnilovskaya, M. B. (1996). New Vendian Saarinids from the Russian platform. Doklady Akademii Nauk, 348, 89–93.

    Google Scholar 

  • Goldring, R., & Curnow, C. N. (1967). The stratigraphy and facies of the late Precambrian at Ediacara, South Australia. Journal of the Geological Society of Australia, 14, 195–214.

    Google Scholar 

  • Gorin, G. E., Racz, L. G., & Walter, M. R. (1982). Late Precambrian-Cambrian sediments of Huqf Group, Sultanate of Oman. AAPG Bulletin, 66, 2609–2627.

    Google Scholar 

  • Gostling, N. J., Dong, X., & Donoghue, P. C. J. (2009). Ontogeny and taphonomy: an experimental taphonomy study of the development of the brine shrimp Artemia salina. Palaeontology, 52(1), 169–186.

    Google Scholar 

  • Grant, S. W. F., Knoll, A. H., & Germs, G. J. B. (1991). Probable calcified metaphytes in the latest Proterozoic Nama Group, Namibia: origin, diagenesis and implications. Journal of Palaeontology, 65(1), 1–18.

    Google Scholar 

  • Grazhdankin, D. (2004). Patterns of distributions in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology, 30, 203–221.

    Google Scholar 

  • Grazhdankin, D. V., Balthasar, U., Nagovitsin, K. E., & Kochnev, B. B. (2008). Carbonate-hosted Avalon-type fossils in arctic Siberia. Geology, 36(10), 801–806.

    Google Scholar 

  • Grazhdankin, D., & Gerdes, G. (2007). Ediacaran microbial colonies. Lethaia, 40, 201–210.

    Google Scholar 

  • Grazhdankin, D., & Seilacher, A. (2002). Underground Vendobionta from Namibia. Palaeontology, 45(1), 57–78.

    Google Scholar 

  • Grimes, S. T., Brock, F., Rickard, D., Davies, K. L., Edwards, D., Briggs, D. E. G., et al. (2001). Understanding fossilization: experimental pyritization of plants. Geology, 29(2), 123–126.

    Google Scholar 

  • Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., & Kaufman, A. J. (1995). Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270, 598–604.

    Google Scholar 

  • Grotzinger, J. P., & Knoll, A. H. (1999). Stromatolites in Precambrian carbonates; evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences, 27, 313–358.

    Google Scholar 

  • Grotzinger, J. P., Watters, W. A., & Knoll, A. H. (2000). Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, 26(3), 334–359.

    Google Scholar 

  • Hagadorn, J. W. (2002). Bear Gulch: an exceptional Upper Carboniferous plattenkalk. In D. J. Botter et al. (Eds.), Exceptional Fossil Preservation: a unique view on the evolution of marine life (pp. 167–183). Columbia University Press: New York.

    Google Scholar 

  • Hagadorn, J. W., & Bottjer, D. J. (1997). Wrinkle structures: microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic–Phanerozoic transition. Geology, 25, 1047–1050.

    Google Scholar 

  • Hagadorn, J. W., & Bottjer, D. J. (1999). Restriction of a late Neoproterozoic biotope: suspect-microbial structures and trace fossils at the Vendian–Cambrian transition. Palaios, 14, 73–85.

    Google Scholar 

  • Hagadorn, J. W., Dott, R. H., Jr., & Damrow, D. (2002). Stranded on a Late Cambrian shoreline: medusae from central Wisconsin. Geology, 30, 147–150.

    Google Scholar 

  • Hagadorn, J. W., Fedo, C. M., & Waggoner, B. M. (2000). Early Cambrian Ediacaran-type fossils from California. Journal of Paleontology, 74, 731–740.

    Google Scholar 

  • Hagadorn, J. W., & Waggoner, B. (2000). Ediacaran fossils from the southwestern Great Basin, United States. Journal of Paleontology, 74, 349–359.

    Google Scholar 

  • Hagadorn, J. W., Xiao, S., Donoghue, P. C. J., Bengtson, S., Gostling, N. J., Pawlowska, M., et al. (2006). Cellular and subcellular structure of Neoproterozoic animal embryos. Science, 314, 291–294.

    Google Scholar 

  • Han, T. M., & Runnegar, B. (1992). Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. Science, 257, 232–235.

    Google Scholar 

  • Hellmund, M., & Hellmund, W. (1996). Zum Fortpflanzungsmodus fossiler Kleinlibellen (Insecta, Odonata, Zygoptera). Paläontologishe Zeitscrift, 70(1–2), 153–170.

    Google Scholar 

  • Hod, I. M., Schouten, S., Jelleman, J., & Sinninghe Damste, J. S. (1999). Origin of free and bound mid-chain methyl alkanes in oils, bitumens and kerogens of the marine, Infracambrian Huqf formation (Oman). Organic Geochemistry, 30, 1411–1428.

    Google Scholar 

  • Hoffman, P. F., & Schrag, D. P. (2002). The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14(3), 129–155.

    Google Scholar 

  • Hofmann, H. J. (1994). Proterozoic carbonaceous compressions (“metaphytes” and “worms”). In: S. Bengtson (Ed.), Early life on Earth (pp. 342–357). Nobel Symposium No. 84. New York: Columbia University Press.

    Google Scholar 

  • Holland, H. D. (2006). The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B, 361, 903–916.

    Google Scholar 

  • Horodyski, R. J., & Donaldson, J. A. (1983). Distribution and significance of microfossils in cherts of the Middle Proterozoic Dismal lakes Group, District of Mackenzie, Northwest Territories, Canada. Journal of Paleontology, 57(2), 271–288.

    Google Scholar 

  • Hou, X. -G., Aldridge, R. J., Bergström, J., Sieveter, D. J., Siveter, D. J., & Feng, X. H. (2004). Cambrian fossils of Chengjiang, China. Oxford: Blackwell Scientific. 233 pp.

    Google Scholar 

  • Hua, H., Chen, Z., Yuan, X., Zhang, L., & Xiao, S. (2005). Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology, 33(4), 277–280.

    Google Scholar 

  • Hurtgen, M. T., Arthur, M. A., & Halverson, G. P. (2005). Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite. Geology, 33, 41–44.

    Google Scholar 

  • Jensen, S. (2003). The Proterozoic and earliest Cambrian trace fossil record; patterns, problems and perspectives. Integrative and Comparative Biology, 43(1), 219–228.

    Google Scholar 

  • Jensen, S. R., Droser, M. L., & Gehling, J. G. (2005). Trace fossil preservation and the early evolution of animals. Palaeogeography, Palaeoclimatology, Palaeoecology, 220, 19–29.

    Google Scholar 

  • Jensen, S. R., Gehling, J. G., Droser, M. L., & Grant, S. F. (2002). A scratch circle origin for the medusoid fossil Kullingia. Lethaia, 35(4), 291–299.

    Google Scholar 

  • Jones, B., de Ronde, C. E. J., Renaut, R. W., & Owen, R. B. (2007). Siliceous sublacustrine spring deposits around hydrothermal vents in Lake Taupo, New Zealand. Journal of the Geological Society, London, 164(1), 227–242.

    Google Scholar 

  • Kazmierczak, J., & Altermann, W. (2002). Neoarchean biomineralization by benthic cyanobacteria. Science, 298, 2351.

    Google Scholar 

  • Kidder, D. L., & Erwin, D. H. (2001). Secular distribution of biogenic silica through the Phanerozoic: comparison of silica-replaced fossils and bedded cherts and the series level. Journal of Geology, 109, 509–522.

    Google Scholar 

  • Kimura, H., & Watanabe, Y. (2001). Oceanic anoxia at the Precambrian–Cambrian boundary. Geology, 29(11), 995–998.

    Google Scholar 

  • Klug, C., Hagdorn, H., & Montenari, M. (2005). Phosphatized soft-tissue in Triassic bivalves. Palaeontology, 48(4), 833–852.

    Google Scholar 

  • Knoll, A. H. (1985). Exceptional preservation of photosynthetic organisms in silicified carbonates and silicified peats. Philosophical Transactions of the Royal Society B, 311, 111–122.

    Google Scholar 

  • Konhauser, K. O., Pecoits, E., Lalonde, S. V., Papineau, D., Nisbet, E. G., Barley, M. E., et al. (2009). Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature, 458, 750–753.

    Google Scholar 

  • Konhauser, K. O., Phoenix, V. R., Bottrell, S. H., Adams, D. G., & Head, I. M. (2001). Microbial-silica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian sinterous stromtolites. Sedimentology, 48, 415–433.

    Google Scholar 

  • Kouchinsky, A., & Bengtson, S. (2002). The tube wall of Cambrian Anabaritids. Acta Palaeontologica Polonica, 47(3), 431–444.

    Google Scholar 

  • Koushinsky, A., Bengtson, S., & Gershwin, L.-A. (1999). Cnidarian-like embryos associated with the first small shelly fossils in Siberia. Geology, 27(7), 609–612.

    Google Scholar 

  • Krajewski, K. P., Van Cappellen, P., Trichet, J., Kuhn, O., Lucas, J., Martín-Algarra, A., Prévot, L., Tewari, V. C., Gaspar, L., Knight, R.I., & Lamboy, M. (1994). Biological processes and apatite formation in sedimentary environments. In: K. B. Föllmi (Ed.), Concepts and controversies in phosphogenesis. Eclogae Geologicae Helvetiae, 87, 701–745.

    Google Scholar 

  • Kremer, B. (2005). Mazuelloids: product of post-mortem phosphatization of acanthomorphic acritarchs. Palaios, 20(1), 27–36.

    Google Scholar 

  • Lamboy, M. (1993). Phosphatization of calcium carbonate in phosphorites: microstructure and importance. Sedimentology, 40(1), 53–62.

    Google Scholar 

  • Landing, E., Myrow, P. M., Benus, A. P., & Narbonne, G. M. (1989). The Placentian Series: appearance of the oldest skeletalized faunas in southeastern Newfoundland. Journal of Paleontology, 63(6), 739–769.

    Google Scholar 

  • Landing, E., Narbonne, G. M., & Myrow, P. (1988). Trace fossils, small shelly fossils and the Precambrian–Cambrian boundary. Proceedings. New York State Museum Bulletin 463, 81 pp.

    Google Scholar 

  • Larson, E. R., & Langenheim, R. L. Jr. (1979). The Mississippian and Pennsylvanian (Carboniferous) systems in the United States, Nevada. United States Geological Survey Professional Paper, 1110–BB.

    Google Scholar 

  • Laurie, J. R. (1997). Silicified Late Cambrian brachiopods from the Georgina Basin, western Queensland. Alcheringa, 21(3), 179–189.

    Google Scholar 

  • Li, C.-W., Chen, J.-Y., & Hua, T.-E. (1998). Precambrian sponges with cellular structures. Science, 279, 879–882.

    Google Scholar 

  • Lin, J.-P., Scott, A. C., Li, C.-W., Wu, H.-J., Ausich, W. I., Zhao, Y.-L., & Hwu, Y.-K. (2006). Silicified egg clusters from a Middle-Cambrian Burgess Shale-type deposit, Guizhou, south China. Geology, 34(12), 1037–1040.

    Google Scholar 

  • Lindsay, J. F., Kruse, P. D., Green, O. R., Hawkins, E., Brasier, M. D., Cartlidge, J., & Corfield, R. M. (2005). The Neoproterozoic-Cambrian record in Australia: a stable isotope study. Precambrian Research, 143, 113–133.

    Google Scholar 

  • Logan, G. A., Hayes, J. M., Hieshima, G. B., & Summons, R. E. (1995). Terminal Proterozoic reorganisation of biogeochemical cycles. Nature, 376, 53–56.

    Google Scholar 

  • Lowenstam, H. A. (1981). Minerals formed by organisms. Science, 211, 1126–1131.

    Google Scholar 

  • Maas, A., Braun, A., Dong, X.-P., Donoghue, P. C. J., Müller, K. J., Olempska, E., et al. (2006). The ‘Orsten’ – more than a Cambrian konservat-lagerstätte yielding exceptional preservation. Palaeoworld, 15, 266–282.

    Google Scholar 

  • Maleokina, S. Y. (2003). Phosphatized algal-bacterial assemblages in Late Cretaceous phosphorites of the Voronezh Anteclise. In: R. B. Hoover, A. Yu. Rozanov, & J. H. Lipps (Eds.), Instruments, methods and missions for astrobiology VI.

    Google Scholar 

  • Maliva, R. G., Knoll, A. H., & Siever, R. (1989). Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle. Palaios, 4, 519–532.

    Google Scholar 

  • Maliva, R. G., Knoll, A. H., & Simonson, B. M. (2005). Secular change in the Precambrian silica cycle: insights from chert petrology. Geological Society of America Bulletin, 117, 835–845.

    Google Scholar 

  • Mapstone, N. B., & McIlroy, D. (2006). Ediacaran fossil preservation: taphonomy and diagenesis of a discoid biota from the Amadeus Basin, Central Australia. Precambrian Research, 149, 126–148.

    Google Scholar 

  • Martill, D. M. (1988). Preservation of fish in the Cretaceous Santana Formation of Brazil. Palaeontology, 31(1), 1–18.

    Google Scholar 

  • Martin, D., Briggs, D. E. G., & Parkes, R. J. (2005). Decay and mineralization of invertebrate eggs. Palaios, 20(6), 562–572.

    Google Scholar 

  • Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Evans, D. A. D., Fedonkin, M. A., & Kirschvink, J. L. (2000). Age of Neoproterozoic bilaterian body and trace fossil, White Sea, Russia. Implications for metazoan evolution. Science, 288, 841–845.

    Google Scholar 

  • Martin, W. R., & Sayles, F. L. (2003). The recycling of biogenic material at the seafloor. Treatise on Geochemistry, 7, 27–65.

    Google Scholar 

  • Mattes, B. W., & Conway-Morris, S. (1990). Carbonate/evaporite deposition in the Late Precambrian–Early Cambrian Ara Formation of southern Oman. In: A. H. F. Robertson, M. P. Searle, & A. C. Ries (Eds.), The geology and tectonics of the Oman Region (pp. 617–636). Geological Society Special Publication 49.

    Google Scholar 

  • Mazumdar, A., & Banerjee, D. M. (1998). Siliceous sponge spicules in the early Cambrian chert-phosphorite member of the lower Tal Formation, Krol Belt, Lesser Himalaya. Geology, 26(10), 899–902.

    Google Scholar 

  • McCarron, M. E. G. (1999). The Sedimentology and Chemostratigraphy of the Nafun Group, Huqf Supergroup, Oman. Unpublished D.Phil Thesis, University of Oxford.

    Google Scholar 

  • McCobb, L. M. E., Briggs, D. E. G., Hall, A. R., & Kenward, H. K. (2004). The preservation of invertebrates in 16th century cesspits at St Saviourgate, York. Archaeometry, 46(1), 157–169.

    Google Scholar 

  • McIlroy, D., Crimes, T. P., & Pauley, J. C. (2005). Fossils and matgrounds from the Neoproterozoic Longmyndian Supergroup, Shropshire, UK. Geological Magazine, 142(4), 441–455.

    Google Scholar 

  • McIlroy, D., & Logan, G. A. (1999). The impact of bioturbation on infaunal ecology and evolution during the Proterozoic–Cambrian transition. Palaios, 14(1), 58–72.

    Google Scholar 

  • McIlroy, D., & Walter, M. R. (1997). A reconsideration of the biogenicity of Arumberia banksi Glaessner and Walter. Alcheringa, 21, 79–80.

    Google Scholar 

  • McIlroy, D., Worden, R. H., & Needham, S. J. (2003). Faces, clay minerals and reservoir potential. Journal of the Geological Society, London, 160, 489–493.

    Google Scholar 

  • McKerrow, W. S., Scotese, C. R., & Brasier, M. D. (1992). Early Cambrian continental reconstructions. Journal of the Geological Society, London, 149, 599–606.

    Google Scholar 

  • McMenamin, M. A. S., & Ryan, T. E. (2002). Cambrian echinoderms, brachiopods and silicified microfossils from the Peerless Formation, Colorado. Geological Soceity of America, Annual Meeting, Denver, 31–10.

    Google Scholar 

  • Morse, J. W. (2003). Formation and diagenesis of carbonate sediments. Treatise on Geochemistry, 7, 67–98.

    Google Scholar 

  • Mu, X., & Riding, R. (1983). Silicified Gymnocodiacean algae from the Permian of Nanjing, China. Palaeontology, 26(2), 261–276.

    Google Scholar 

  • Müller, K. J. (1985). Exceptional preservation in calcareous nodules. Philosophical Transactions of the Royal Society B, 311, 67–73.

    Google Scholar 

  • Müller, K. J., Walossek, D., & Zakharov, A. (1995). ‘Orsten’ type phosphatizaed soft-integument preservation and a new record from the Middle Cambrian Kuonamka Formation in Siberia, Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen, 197, 101–118.

    Google Scholar 

  • Narbonne, G. M. (1998). The Ediacara biota; a terminal Neoproterozoic experiment in the evolution of life. GSA Today, 8(2), 1–6.

    Google Scholar 

  • Narbonne, G. M. (2004). Modular construction in the Ediacara biota. Science, 315, 1141–1144.

    Google Scholar 

  • Narbonne, G. M. (2005). The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33, 421–442.

    Google Scholar 

  • Noffke, N., Beukes, N., Bower, D., Hazen, R. M., & Swift, D. J. P. (2008). An actualistic perspective into Archean worlds – (cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa. Geobiology, 6, 5–20.

    Google Scholar 

  • Noffke, N., Gerdes, G., Klenke, T., & Krumbein, W. E. (2001). Microbially induced sedimentary structures – a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71, 649–656.

    Google Scholar 

  • Noffke, N., Knoll, A. H., & Grotzinger, J. P. (2002). Sedimentary controls on the preservation of microbial mats in siliciclastic deposits: a case study from the Upper Neoproterozoic Nama Group, Namibia. Palaios, 17(6), 533–544.

    Google Scholar 

  • Oehler, D. Z. (1977). Pyrenoid-like structures in Late Precambrian algae from the Bitter Springs Formation of Australia. Journal of Paleontology, 51(5), 885–901.

    Google Scholar 

  • Page, A., Gabbott, S. E., Wilby, P. R., & Zalasiewicz, J. A. (2008). Ubiquitous Burgess Shale-style ‘clay templates’ in low grade metamorphic mudrocks. Geology, 36(11), 855–858.

    Google Scholar 

  • Park, L. E. (1995). Geochemical and paleoenvironmental analysis of lacustrine arthropod-bearing concretions of the Barstow Formation, southern California. Palaios, 10(1), 44–57.

    Google Scholar 

  • Park, L. E., & Downing, K. F. (2001). Paleoecology of an exceptionally preserved arthropod fauna from lake deposits of the Miocene Barstow Formation, Southern California, USA. Palaios, 16(2), 175–184.

    Google Scholar 

  • Peach, B. N., Horne, J., Gunn, W., Clough, C. T., Hinxman, L. W., & Teall, J. J. H. (1907). The geological structure of the North-West Highlands of Scotland. Memoirs of the Geological Survey of Great Britain.

    Google Scholar 

  • Peat, C. (1984). Precambrian microfossils from the Longmyndian of Shropshire. Proceedings of the Geologists’ Association, 5, 17–22.

    Google Scholar 

  • Peat, C., & Diver, W. (1982). First signs of life on Earth. New Scientist, 95, 776–778.

    Google Scholar 

  • Pentecost, A., & Spiro, B. (1990). Stable carbon and oxygen isotope composition of calcites associated with modern freshwater cyanobacteria and algae. Geomicrobiology Journal, 8, 17–26.

    Google Scholar 

  • Perry, E. C., & Lefticariu, L. (2003). Formation and geochemistry of Precambrian cherts. Treatise on Geochemistry, 7, 99–113.

    Google Scholar 

  • Philippe, M., Szakmany, Gy, Gulyas-Kis, Cs, & Jozsa, S. (2000). An Upper Carboniferous-Lower Permian silicified wood in the Miocene conglomerate from the western Mecsek Mts. (southern Hungary). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 4, 193–204.

    Google Scholar 

  • Piper, D. Z., & Link, P. K. (2002). An upwelling model for the Phosphoria Sea: A Permian, ocean-margin sea in the northwest United States. American Association of Petroleum Geologists Bulletin, 86(7), 1217–1235.

    Google Scholar 

  • Pires, E. F., & Sommer, M. G. (2008). Plant-arthropod interaction in the Early Cretaceous (Berriasian) of the Araripe Basin, Brazil. Journal of South American Earth Sciences, 27(1), 50–59.

    Google Scholar 

  • Polizzotto, K., Landman, N. H., & Mapes, R. H. (2007). Cameral Membranes in Carboniferous and Permian goniatites: description and relation to pseudosutures. In N. H. Landman, R. A. Davis, & R. H. Mapes (Eds.), Cephalopods present and past: new insights and fresh perspectives (pp. 181–204). Berlin: Springer.

    Google Scholar 

  • Porter, S. M. (2004). Closing the phosphatization window: Testing for the influence of taphonomic megabias on the pattern of small shelly fossil decline. Palaios, 19(2), 178–183.

    Google Scholar 

  • Porter, S. M., Meisterfield, R., & Knoll, A. H. (2003). Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. Journal of Paleontology, 77(3), 409–429.

    Google Scholar 

  • Powell, W. (2007). Silicification as a common mode of preservation in North American Cambrian lagerstätten. Geological Society of America. Abstracts with Programs, 39(6), 333.

    Google Scholar 

  • Pratt, B. R. (1998). Molar-tooth structure in Proterozoic carbonate rocks: Origin from synsedimentary earthquakes, and implications for the nature and evolution of basins and marine sediment. GSA Bulletin, 110(8), 1028–1045.

    Google Scholar 

  • Pyle, L. J., Narbonne, G., Nowlan, S., Xiao, S., & James, N. P. (2006). Early Cambrian metazoan eggs, embryos and phosphatic microfossils from northwestern Canada. Journal of Paleontology, 80(5), 811–825.

    Google Scholar 

  • Raff, E. C., Villinski, J. T., Turner, F. R., Donoghue, P. C. J., & Raff, R. A. (2006). Experimental taphonomy shows the feasibility of fossil embryos. Proceedings of the National Academy of Science of the United States America, 103, 5846–5851.

    Google Scholar 

  • Rao, V. P., Hegner, E., Naqvi, S. W. A., Kessarkar, P. M., Ahmad, S. M., & Raju, D. S. (2008). Miocene phosphorites from the Murray Ridge, northwestern Arabian Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 260(3–4), 347–358.

    Google Scholar 

  • Rao, V. P., Rao, K. M., & Raju, D. S. N. (2000). Quaternary phosphorites from the continental margin off Chennai, southeast India: analogs of ancient phosphate stromatolites. Journal of Sedimentary Research, 70(5), 1197–1209.

    Google Scholar 

  • Retallack, G. J. (1994). Were the Ediacaran fossils lichens? Palaeobiology, 20(4), 523–544.

    Google Scholar 

  • Riding, R. (2006a). Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic–Cambrian changes in atmospheric composition. Geobiology, 4(4), 299–316.

    Google Scholar 

  • Riding, R. (2006b). Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology, 185, 229–238.

    Google Scholar 

  • Ruttenberg, K. C. (2003). The global phosphorous cycle. Treatise on Geochemistry, 8, 585–643.

    Google Scholar 

  • Sakurai, R., Ito, M., Ueno, Y., Kitajima, K., & Maruyama, S. (2005). Facies architecture and sequence-stratigraphic features of the Tumbiana Formation in the Pilbara Craton, northwestern Australia: Implications for depositional environments of oxygenic stromatolites during the Late Archean. Precambrian Research, 138, 255–273.

    Google Scholar 

  • Samuelsson, J., & Butterfield, N. J. (2001). Neoproterozoic fossils from the Franklin Mountains, northwestern Canada: stratigraphic and palaeobiological implications. Precambrian Research, 107(3), 235–251.

    Google Scholar 

  • Schieber, J. (1986). The possible role of benthic microbial mats during the formation of carbonaceous shales of shallow Mid-Proterozoic basins. Sedimentology, 33(4), 521–536.

    Google Scholar 

  • Schieber, J. (2002). Sedimentary pyrite: a window into the microbial past. Geology, 30(6), 531–534.

    Google Scholar 

  • Schopf, J. W. (1968). Microflora of the bitter springs formation, Late Precambrian Central Australia. Journal of Paleontology, 42, 651–688.

    Google Scholar 

  • Schopf, J. W., & Fairchild, T. R. (1973). Late Precambrian microfossils: a new stromatolitic biota from Boorthanna, South Australia. Nature, 242, 537–538.

    Google Scholar 

  • Schopf, J. W., & Klein, C. (1992). The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press: New York. 1374 pp.

    Google Scholar 

  • Schröder, S., & Grotzinger, J. P. (2007). Evidence for anoxia at the Ediacaran–Cambrian boundary: the record of redox-sensitive trace elements and rare earth elements in Oman. Journal of the Geological Society, London, 164(1), 175–187.

    Google Scholar 

  • Schröder, S., Grotzinger, J. P., Amthor, J. E., & Matter, A. (2005). Carbonate deposition and hydrocarbon reservoir development at the Precambrian–Cambrian boundary: the Ara Group in South Oman. Sedimentary Geology, 180, 1–28.

    Google Scholar 

  • Schubert, J. K., Kidder, D. L., & Erwin, D. H. (1997). Silica-replaced fossils through the Phanerozoic. Geology, 25(11), 1031–1034.

    Google Scholar 

  • Seilacher, A. (1956). Der Beginn des Kambriums als biologische Wende. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen, 103, 155–180.

    Google Scholar 

  • Seilacher, A. (1992). Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society, London, 149, 607–613.

    Google Scholar 

  • Seilacher, A. (1999). Biomat-related lifestyles in the Precambrian. Palaios, 14(1), 86–93.

    Google Scholar 

  • Seilacher, A., & Pflüger, F. (1994). From biomats to benthic agriculture: a biohistoric revolution. In W. E. Krumbein, D. M. Paterson, & L. Stal (Eds.), Biostabilization of Sediments (pp. 97–105). Oldenburg, Germany: Bibliotheks und Informations system der Universität Oldenburg.

    Google Scholar 

  • Shen, Y., & Schidlowski, M. (2000). New C isotope stratigraphy from southwest China: implications for the placement of the Precambrian–Cambrian boundary on the Yangtze Platform and global correlations. Geology, 28(7), 623–626.

    Google Scholar 

  • Shergold, J. H., & Brasier, M. D. (1986). Proterozoic and Cambrian phosphorites – specialist studies: biochronology of Proterozoic and Cambrian phosphorites. In P. J. Cook & J. H. Shergold (Eds.), Phosphate deposits of the world (Vol. 1, pp. 295–345). Cambridge: Cambridge University Press.

    Google Scholar 

  • Shields, G. A. (2002). ‘Molar-tooth microspar’: a chemical explanation for its disappearance 750 Ma. Terra Nova, 14, 108–113.

    Google Scholar 

  • Shields, G., Stille, P., Brasier, M. D., & Atudorei, N.-V. (1997). Stratified oceans and oxygenation of the Late Precambrian environment: a post glacial geochemical record from the Neoproterozoic of W Mongolia. Terra Nova, 9, 218–222.

    Google Scholar 

  • Signor, P. W., & Vermeij, G. J. (1994). The plankton and benthos: origins and early history of an evolving relationship. Paleobiology, 20(3), 297–319.

    Google Scholar 

  • Siveter, D. J., Williams, M., & Waloszek, D. (2001). A phosphatocopid crustacean with appendages from the Lower Cambrian. Science, 293, 479–481.

    Google Scholar 

  • Steiner, M. (1994). Die neoproterozoischen Megaalgen Südchinas. Berliner Geowissenschaftliche Abhandlungen, E, 15, 1–146.

    Google Scholar 

  • Steiner, M., & Reitner, J. (2001). Evidence of organic structures in Ediacara-type fossils and associated microbial mats. Geology, 29(12), 1119–1122.

    Google Scholar 

  • Sumner, D. Y., & Grotzinger, J. P. (2004). Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Cambellrand-Malmani Platform, South Africa. Sedimentology, 51, 1273–1299.

    Google Scholar 

  • Sun, W. (1994). Early multicellular fossils. In: S. Bengtson (Ed.), Early life on Earth (pp. 358–369). Nobel Symposium No. 84. New York: Columbia University Press.

    Google Scholar 

  • Swett, K. (1964). Petrology and paragenesis of the Ordovician Manitou Formation along the Front Range of Colorado. Journal of Sedimentary Research, 34, 615–624.

    Google Scholar 

  • Taylor, T. N., Hass, H., Kerp, H., Krings, M., & Hanlin, R. T. (2005). Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism. Mycologia, 97(1), 269–285.

    Google Scholar 

  • Tiwari, M., & Knoll, A. H. (1994). Large acanthomorphic acritarchs from the Infrakrol Formation of the Lesser Himalaya and their stratigraphic significance. Journal of Himalayan Geology, 5, 193–201.

    Google Scholar 

  • Tobin, K. J. (2004). A survey of Paleozoic microbial fossils in chert. Sedimentary Geology, 168, 97–107.

    Google Scholar 

  • Toporski, J. K., Steele, A., Westall, F., Thomas-Keprta, K. L., & McKay, D. S. (2002). The simulated silicification of bacteria – new clues to the modes and timing of bacterial preservation and implications for the search for extraterrestrial microfossils. Astrobiology, 2(1), 1–26.

    Google Scholar 

  • Trewin, N. H., Fayers, S. R., & Kelman, R. (2003). Subaqueous silicification of the contents of small ponds in an Early Devonian hot-spring complex, Rhynie, Scotland. Canadian Journal of Earth Sciences, 40(11), 1697–1712.

    Google Scholar 

  • Trewin, N. H., & Rice, C. M. (2004). The Rhynie hot-spring system: geology, biota and mineralization. Transactions of the Royal Society of Edinburgh, Earth Sciences, 94, 1–246.

    Google Scholar 

  • Trichet, J., & Fikri, A. (1997). Organic matter in the genesis of high-island atoll peloidal phosphorites; the lagoonal link. Journal of Sedimentary Research, 67(5), 891–897.

    Google Scholar 

  • Turnbull, M. J. M., Whitehouse, M. J., & Moorbath, S. (1996). New isotopic age determinations for the Torridonian, NW Scotland. Journal of the Geological Society, London, 153(6), 955–964.

    Google Scholar 

  • Turner, E. C., & Jones, B. (2005). Microscopic calcite dendrites in cold-water tufa: implications for nucleation of micrite and cement. Sedimentology, 52, 1043–1066.

    Google Scholar 

  • Turner, E. C., Narbonne, G. M., & James, N. P. (1993). Neoproterozoic reef microstructures from the Little Dal Group, northwestern Canada. Geology, 21, 259–262.

    Google Scholar 

  • Urbanek, A., & Rozanov, A. Yu. (1983). Upper Precambrian and Cambrian Palaeontology of the East-European Platform. Wydawnictwa Geologiczne, Warszawa: Publishing House, 158 pp, 94pls.

    Google Scholar 

  • Van Cappellen, P., & Ingall, E. D. (1994). Benthic phosphorus regeneration, net-primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography, 9(5), 677–692.

    Google Scholar 

  • Vidal, G. (1990). Giant acanthomorphic acritarchs from the upper Proterozoic in southern Norway. Palaeontology, 33, 287–298.

    Google Scholar 

  • Vidal, G., & Moczydlowska, M. (1992). Patterns of phytoplankton radiation across the Precambrian–Cambrian boundary. Journal of the Geological Society, London, 149(4), 647–654.

    Google Scholar 

  • Wade, M. (1968). Preservation of soft-bodied animals in pre-Cambrian sandstones at Ediacara, South Australia. Lethaia, 1, 238–267.

    Google Scholar 

  • Waggoner, B. M. (1995). Ediacaran lichens: a critique. Paleobiology, 21, 393–397.

    Google Scholar 

  • Walossek, D., Hinz-Schallreuter, I., Shergold, J. H., & Müller, K. (1993). Three-dimensional preservation of arthropod integument from the Middle Cambrian of Australia. Lethaia, 26(1), 7–15.

    Google Scholar 

  • Walossek, D., Repetski, J. E., & Müller, K. J. (1994). An exceptionally preserved parasitic arthropod, Heymonsicambria taylori n. sp. (Arthropoda incertae sedis: Pentastomida), from Cambrian-Ordovician boundary beds of Newfoundland, Canada. Canadian Journal of Earth Science, 31, 1664–1671.

    Google Scholar 

  • Wardlaw, B. R., & Collinson, J. W. (1978). Biostratigraphic zonation of the Park City Group. United States Geological Survey Professional Paper 1163-D.

    Google Scholar 

  • Weitschat, W. (1983). Myodocopid ostracodes with preserved appendages from the Lower Triassic of Spitzbergen. Paläontologishe Zeitscrift, 57, 309–323.

    Google Scholar 

  • Westall, F. (1994). Silicified bacteria and associated biofilm from the deep-sea sedimentary environment. Darmstädter Beiträge zur Naturgeschichte, 4, 29–43.

    Google Scholar 

  • Westall, F., Boni, L., & Guerzoni, E. (1995). The experimental silicification of microorganisms. Palaentology, 38(3), 495–528.

    Google Scholar 

  • Wilby, P. R., Briggs, D. E. G., Bernier, P., & Gaillard, C. (1996). The role of microbial mats in the fossilization of soft-tissues. Geology, 24(9), 787–790.

    Google Scholar 

  • Wilkinson, I., Wilby, P. R., Williams, P., Siveter, D. J., & Vannier, J. (2007). Ostracod carnivory through time. In A. M. T. Elewa (Ed.), Predation in organisms: a distinct phenomenon (pp. 39–57). Heidelberg: Springer-Verlag.

    Google Scholar 

  • Wood, R. A. (1998). The ecological evolution of reefs. Annual Review of Ecology and Systematics, 29, 179–206.

    Google Scholar 

  • Wood, R. A., Grotzinger, J. P., & Dickson, J. A. D. (2002). Proterozoic modular biomineralized Metazoan from the Nama Group, Namibia. Science, 296, 2383–2386.

    Google Scholar 

  • Xiao, S. (2004). New multicellular algal fossils and acritarchs in Doushantuo chert nodules. Journal of Paleontology, 78, 393–401.

    Google Scholar 

  • Xiao, S., & Knoll, A. H. (1999). Fossil preservation in the Neoproterozoic Doushantuo phosphorite lagerstatte, South China. Lethaia, 32(3), 219–240.

    Google Scholar 

  • Xiao, S., Shen, B., Zhou, C., Xie, G., & Yuan, X. (2005). A uniquely preserved Ediacaran fossil with direct evidence for a quilted body plan. Proceedings of the National Academy of Sciences of the United States of America, 102, 10227–10232.

    Google Scholar 

  • Xiao, S., Yuan, X., Steiner, M., & Knoll, A. H. (2002). Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe Biota, South China. Journal of Paleontology, 76(2), 347–376.

    Google Scholar 

  • Xiao, S., Zhang, Y., & Knoll, H. (1998). Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391, 553–558.

    Google Scholar 

  • Yang, R., & Zhao, Y. (2000). Discovery of Corallina fossil from the Middle Cambrian of Taijiang County, Guizhou Province, China. Chinese Science Bulletin, 45, 544–547.

    Google Scholar 

  • Yao, J., Xiao, S., Yin, L., Li, G., & Yuan, X. (2005). Basal Cambrian microfossils from the Yurtus and Xisanblaq Formations (Tarim, North West China): systematic revision and biostratigraphic correlation of Michrystridium-like acritarchs. Palaeontology, 48(4), 687–708.

    Google Scholar 

  • Yin, C., Bengtson, S., & Zhao, Y. (2004). Silicified and phosphatized Tianzhushania, spheroidal microfossils of possible animal origin from the Neoproterozoic of South China. Acta Palaeontologica Polonica, 49(1), 1–12.

    Google Scholar 

  • Yin, L., Xiao, S., & Yuan, X. (2001). New observations on spicule-like structures from Doushantuo phosphorites at Weng’an. Guizhou Province. Chinese Science Bulletin, 46(21), 1828–1832.

    Google Scholar 

  • Yin, L., Zhu, M., Knoll, A. H., Yuan, X., & Hu, J. (2007). Doushantuo embryos preserved inside diapause egg cysts. Nature, 446, 661–663.

    Google Scholar 

  • Zhang, Z. (1997). A new Palaeoproterozoic clastic-facies microbiota from the Changzhougou Formation, Changcheng Group, Jixian, North China. Geological Magazine, 134(2), 145–150.

    Google Scholar 

  • Zhang, X. -G., & Pratt, B. R. (1994). Middle Cambrian arthropod embryos and blastomeres. Science, 266, 637–639.

    Google Scholar 

  • Zhegallo, E. A., Rozanov, A Yu, Ushatinskaya, G. T., Hoover, R. B., Gerasimenko, L. M., & Ragozina, A. L. (2000). Atlas of microorganisms from ancient phosphorites of Khubsugul (Mongolia). Huntsville: Paleontological Institute of Russian Academy of Sciences, NASA-Marshall Space Flight Centre. 171 pp.

    Google Scholar 

  • Zhou, C., Brasier, M. D., & Xue, Y. (2001). Three-dimensional phosphatic preservation of giant acritarchs from the terminal Proterozoic Doushantuo Formation in Guizhou and Hubei Provinces, South China. Palaeontology, 44(6), 1157–1178.

    Google Scholar 

  • Zhou, C., Xie, G., McFadden, K., Xiao, S., & Yuan, X. (2006). The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: causes and biostratigraphic importance. Geology Journal, 42(3–4), 229–262.

    Google Scholar 

  • Zhu, S., Sun, S., Huang, X., He, Y., Zhu, G., Sun, L., et al. (2000). Discovery of carbonaceous compressions and their mutlicellular tissues from the Changzhougou Formation (1800Ma) in the Yanshan Range, North China. Chinese Science Bulletin, 45(9), 841–847.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin D. Brasier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Brasier, M.D., Antcliffe, J.B., Callow, R.H.T. (2011). Evolutionary Trends in Remarkable Fossil Preservation Across the Ediacaran–Cambrian Transition and the Impact of Metazoan Mixing. In: Allison, P.A., Bottjer, D.J. (eds) Taphonomy. Aims & Scope Topics in Geobiology Book Series, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8643-3_15

Download citation

Publish with us

Policies and ethics