Skip to main content

Phylogeny of Animals: Genomes Have a Lot to Say

  • Chapter
  • First Online:
Book cover Introduction to Marine Genomics

Part of the book series: Advances in Marine Genomics ((AMGE,volume 1))

  • 1457 Accesses

Abstract

Multiple lines of evidence have been proposed to resolve the tree of metazoans. Views based on morphology and development were often questioned because they relied on characters whose evolutionary orientation is difficult. Molecules offer an independent perspective and the employment of some genes, such as ribosomal RNA subunits (SSU/LSU) or Hox genes, have led to a profound reshaping of the metazoan tree, leading to the “New View” of animal phylogeny. However, classical molecular approaches have not succeeded in settling some long-standing issues in animal relationships. Recently, extensive genome data have been collected for a large set of organisms including several evolutionarily relevant marine species. This has allowed the development of phylogenomic approaches, which have the potential to overcome the limitations of single-gene phylogenies by inferring trees on the base of whole genome evidence. This new approach has triggered several advances regarding metazoan relationships such as the reevaluation of chordate relationships and the re-positioning of some problematic minor phyla with improved accuracy. These studies have also raised new questions about the processes that underlie morphological evolution, as well as the future of molecular phylogenetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboobaker AA, Blaxter ML (2003) Hox Gene Loss during Dynamic Evolution of the Nematode Cluster. Curr Biol 13:37–40

    CAS  PubMed  Google Scholar 

  • Adoutte A, Balavoine G, Lartillot N, Lespinet O, Prud’homme B, de Rosa R (2000) The new animal phylogeny: reliability and implications. Proc Natl Acad Sci U S A 97:4453–4456

    CAS  PubMed  Google Scholar 

  • Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    CAS  PubMed  Google Scholar 

  • Anderson FE, Cordoba AJ, Thollesson M (2004) Bilaterian phylogeny based on analyses of a region of the sodium-potassium ATPase beta-subunit gene. J Mol Evol 58:252–268

    CAS  PubMed  Google Scholar 

  • Aristotle (1965) De Generatione animalium, tr. Arthur Platt, Clarendon Press, Oxford

    Google Scholar 

  • Balavoine G, de Rosa R, Adoutte A (2002) Hox clusters and bilaterian phylogeny. Mol Phylogenet Evol 24:366–373

    CAS  PubMed  Google Scholar 

  • Ball EE, Miller DJ (2006) Phylogeny: the continuing classificatory conundrum of chaetognaths. Curr Biol 16:R593–R596

    CAS  PubMed  Google Scholar 

  • Barnes RD (1974) Invertebrate zoology. W.B. Saunders Company, Philadelphia.

    Google Scholar 

  • Baurain D, Brinkmann H, Philippe H (2007) Lack of resolution in the animal phylogeny: closely spaced cladogeneses or undetected systematic errors?. Mol Biol Evol 24:6–9

    CAS  PubMed  Google Scholar 

  • Bergsten J (2005) A reviews of long-branch attraction. Cladistics 21:163–193

    Google Scholar 

  • Blair JE, Ikeo K, Gojobori T, Hedges SB (2002) The evolutionary position of nematodes. BMC Evol Biol 2:7

    PubMed  Google Scholar 

  • Boore JL (2006) The use of genome-level characters for phylogenetic reconstruction. Trends Ecol Evol 21:439–446

    PubMed  Google Scholar 

  • Borchiellini C, Boury-Esnault N, Vacelet J, Le Parco Y (1998) Phylogenetic analysis of the Hsp70 sequences reveals the monophyly of Metazoa and specific phylogenetic relationships between animals and fungi. Mol Biol Evol 15:647–655

    CAS  PubMed  Google Scholar 

  • Borchiellini C, Manuel M, Alivon E, Boury-Esnault N, Vacelet J, Le Parco Y (2001) Sponge paraphyly and the origin of Metazoa. J Evol Biol 14:171–179

    Google Scholar 

  • Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444:85–88

    CAS  PubMed  Google Scholar 

  • Collins AG (1998) Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence. Proc Natl Acad Sci U S A 95:15458–15463

    CAS  PubMed  Google Scholar 

  • Conway Morris S, Peel JS (1995) Articulated Halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution. Philos Trans Biol Sci 347:305–358

    Google Scholar 

  • Copley RR, Aloy P, Russell RB, Telford MJ (2004) Systematic searches for molecular synapomorphies in model metazoan genomes give some support for Ecdysozoa after accounting for the idiosyncrasies of Caenorhabditis elegans. Evol Dev 6:164–169

    CAS  PubMed  Google Scholar 

  • Cuvier G (1817) Le règne animal distribué selon son organisation, pour servir de base à l’hisoire naturelle des animaux et d’introduction à l’anatomie comparée. Deterville, Paris.

    Google Scholar 

  • de Queiroz A, Gatesy J (2007) The supermatrix approach to systematics. Trends Ecol Evol 22:34–41

    PubMed  Google Scholar 

  • de Rosa R, Grenier JK, Andreeva T, Cook CE, Adoutte A, Akam M, Carroll SB, Balavoine G (1999) Hox genes in brachiopods and priapulids and protostome evolution. Nature 399:772–776

    CAS  PubMed  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968

    CAS  PubMed  Google Scholar 

  • Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375

    CAS  PubMed  Google Scholar 

  • Deutsch JS (2008) Do acoels climb up the “Scale of Beings”?. Evol Dev 10:135–140

    PubMed  Google Scholar 

  • Domazet-Loso T, Brajkovic J, Tautz D (2007) A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends Genet 23:533–539

    CAS  PubMed  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sorensen MV, Haddock SH, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745-749

    CAS  PubMed  Google Scholar 

  • Eernisse DJ, Albert JS, Anderson FE (1992) Annelida and arthropoda are not sister taxa: a phylogenetic analysis of spiralian metazoan morphology. Syst Biol 41:305–330

    Google Scholar 

  • Emig CC (1982) The biology of Phoronida. Adv Mar Biol 19:1–89

    Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410

    Google Scholar 

  • Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT, Raff EC, Pace NR, Raff RA (1988) Molecular phylogeny of the animal kingdom. Science 239:748–753

    CAS  PubMed  Google Scholar 

  • Giribet G, Distel DL, Polz M, Sterrer W, Wheeler WC (2000) Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Syst Biol 49:539–562

    CAS  PubMed  Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Belknap/Harvard, Cambridge, MA.

    Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Belknap/Harvard, Cambridge, MA.

    Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    PubMed  Google Scholar 

  • Halanych K (2004) The New View of Animal Phylogeny. Annu Rev Ecol Evol Syst 35:229–256

    Google Scholar 

  • Halanych KM, Bacheller JD, Aguinaldo AM, Liva SM, Hillis DM, Lake JA (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267:1641–1643

    CAS  PubMed  Google Scholar 

  • Hausdorf B, Helmkampf M, Meyer A, Witek A, Herlyn H, Bruchhaus I, Hankeln T, Struck TH, Lieb B (2007) Spiralian phylogenomics supports the resurrection of Bryozoa comprising Ectoprocta and Entoprocta. Mol Biol Evol 24:2723–2729

    CAS  PubMed  Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana.

    Google Scholar 

  • Hordijk W, Gascuel O (2005) Improving the efficiency of SPR moves in phylogenetic tree search methods based on maximum likelihood. Bioinformatics 21:4338–4347

    CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314

    CAS  PubMed  Google Scholar 

  • Hyman LH (1940–1967) The invertebrates. McGraw-Hill, New York.

    Google Scholar 

  • Hyman LH (1959) The invertebrates, Vol. 5. Smaller Coelomate groups. McGraw-Hill, New York

    Google Scholar 

  • Irimia M, Maeso I, Penny D, Garcia-Fernandez J, Roy SW (2007) Rare coding sequence changes are consistent with Ecdysozoa, not Coelomata. Mol Biol Evol 24:1604–1607

    CAS  PubMed  Google Scholar 

  • Jeffery WR, Strickler AG, Yamamoto Y (2004) Migratory neural crest-like cells form body pigmentation in a urochordate embryo. Nature 431:696–699

    CAS  PubMed  Google Scholar 

  • Jeffroy O, Brinkmann H, Delsuc F, Philippe H (2006) Phylogenomics: the beginning of incongruence?. Trends Genet 22:225–231

    CAS  PubMed  Google Scholar 

  • Jenner RA (2000) Evolution of animal body plans: the role of metazoan phylogeny at the interface between pattern and process. Evol Dev 2:208–221

    CAS  PubMed  Google Scholar 

  • Jenner RA (2001) Bilaterian phylogeny and uncritical recycling of morphological data sets. Syst Biol 50:730–742

    CAS  PubMed  Google Scholar 

  • Jenner RA (2004) Libbie Henrietta Hyman (1888–1969): from developmental mechanics to the evolution of animal body plans. J Exp Zoolog B Mol Dev Evol 302:413–423

    Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lake JA (1990) Origin of the Metazoa. Proc Natl Acad Sci U S A 87:763–766

    CAS  PubMed  Google Scholar 

  • Lartillot N, Brinkmann H, Philippe H (2007) Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol 7(Suppl 1):S4

    PubMed  Google Scholar 

  • Lartillot N, Philippe H (2004) A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 21:1095–1109

    CAS  PubMed  Google Scholar 

  • Lartillot N, Philippe H (2008) Improvement of molecular phylogenetic inference and the phylogeny of Bilateria. Philos Trans R Soc Lond B Biol Sci 363:1463–1472

    PubMed  Google Scholar 

  • Lemons D, McGinnis W (2006) Genomic evolution of Hox gene clusters. Science 313:1918–1922

    CAS  PubMed  Google Scholar 

  • Littlewood DT, Olson PD, Telford MJ, Herniou EA, Riutort M (2001) Elongation factor 1-alpha sequences alone do not assist in resolving the position of the acoela within the metazoa. Mol Biol Evol 18:437–442

    CAS  PubMed  Google Scholar 

  • Lynch M (2007) The origins of genome architecture. Sinauer, Sunderland.

    Google Scholar 

  • Mallatt J, Winchell CJ (2002) Testing the new animal phylogeny: first use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Mol Biol Evol 19:289–301

    CAS  PubMed  Google Scholar 

  • Marcus E (1958) On the evolution of the animal phyla. Quart Rev Biol 33:24–58

    Google Scholar 

  • Marlétaz F, Gilles A, Caubit X, Perez Y, Dossat C, Samain S, Gyapay G, Wincker P, Le Parco Y (2008) Chaetognath transcriptome reveals ancestral and unique features among bilaterians. Genome Biol 9:R94

    PubMed  Google Scholar 

  • Marlétaz F, Martin E, Perez Y, Papillon D, Caubit X, Lowe CJ, Freeman B, Fasano L, Dossat C, Wincker P, Weissenbach J, Le Parco Y (2006) Chaetognath phylogenomics: a protostome with deuterostome-like development. Curr Biol 16:R

    Google Scholar 

  • Martindale MQ (2005) The evolution of metazoan axial properties. Nat Rev Genet 6:917–927

    CAS  PubMed  Google Scholar 

  • Martindale MQ, Henry JQ (1999) Intracellular fate mapping in a basal metazoan, the ctenophore Mnemiopsis leidyi, reveals the origins of mesoderm and the existence of indeterminate cell lineages. Dev Biol 214:243–257

    CAS  PubMed  Google Scholar 

  • Maslakova SA, Martindale MQ, Norenburg JL (2004) Vestigial prototroch in a basal nemertean, Carinoma tremaphoros (Nemertea; Palaeonemertea). Evol Dev 6:219–226

    CAS  PubMed  Google Scholar 

  • Matus DQ, Copley RR, Dunn CW, Hejnol A, Eccleston H, Halanych KM, Martindale MQ, Telford MJ (2006) Broad taxon and gene sampling indicate that chaetognaths are protostomes. Curr Biol 16:R

    Google Scholar 

  • Muller GB (2007) Evo-devo: extending the evolutionary synthesis. Nat Rev Genet 8:943–949

    PubMed  Google Scholar 

  • Nielsen C (2001) Animal Evolution: interelationships of the living phyla. Oxford University Press, New York.

    Google Scholar 

  • Nielsen C (2008) Six major steps in animal evolution: are we derived sponge larvae?. Evol Dev 10:241–257

    PubMed  Google Scholar 

  • Papillon D, Perez Y, Caubit X, Le Parco Y (2004) Identification of chaetognaths as protostomes is supported by the analysis of their mitochondrial genome. Mol Biol Evol 21:2122–2129

    CAS  PubMed  Google Scholar 

  • Papillon D, Perez Y, Caubit X, Le Parco Y (2006) Systematics of Chaetognatha under the light of molecular data, using duplicated ribosomal 18S DNA sequences. Mol Phylogenet Evol 38:621–634

    CAS  PubMed  Google Scholar 

  • Passamaneck Y, Halanych KM (2006) Lophotrochozoan phylogeny assessed with LSU and SSU data: evidence of lophophorate polyphyly. Mol Phylogenet Evol 40:20–28

    CAS  PubMed  Google Scholar 

  • Peterson KJ, Eernisse DJ (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evol Dev 3:170–205

    CAS  PubMed  Google Scholar 

  • Philip GK, Creevey CJ, McInerney JO (2005) The Opisthokonta and the Ecdysozoa may not be clades: stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa. Mol Biol Evol 22:1175–1184

    CAS  PubMed  Google Scholar 

  • Philippe H, Brinkmann H, Martinez P, Riutort M, Baguna J (2007) Acoel flatworms are not platyhelminthes: evidence from phylogenomics. PLoS ONE 2:e717

    PubMed  Google Scholar 

  • Philippe H, Delsuc F, Brinkmann H, Lartillot N (2005a) Phylogenomics. Annu Rev Ecol Evol Syst 36:541–562

    Google Scholar 

  • Philippe H, Lartillot N, Brinkmann H (2005b) Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 22:1246–1253

    CAS  PubMed  Google Scholar 

  • Philippe H, Snell EA, Bapteste E, Lopez P, Holland PW, Casane D (2004) Phylogenomics of eukaryotes: impact of missing data on large alignments. Mol Biol Evol 21:1740–1752

    CAS  PubMed  Google Scholar 

  • Philippe H, Telford MJ (2006) Large-scale sequencing and the new animal phylogeny. Trends Ecol Evol 21:614–620

    PubMed  Google Scholar 

  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94

    CAS  PubMed  Google Scholar 

  • Raible F, Tessmar-Raible K, Osoegawa K, Wincker P, Jubin C, Balavoine G, Ferrier D, Benes V, de Jong P, Weissenbach J, Bork P, Arendt D (2005) Vertebrate-type intron-rich genes in the marine annelid Platynereis dumerilii. Science 310:1325–1326

    CAS  PubMed  Google Scholar 

  • Remane A (1963) The enterocelic origin of the coelom. In: Dougherty EC (ed) The lower metazoa. University of California Press, Berkeley, CA, pp 78–90

    Google Scholar 

  • Rogozin IB, Wolf YI, Carmel L, Koonin EV (2007) Ecdysozoan clade rejected by genome-wide analysis of rare amino acid replacements. Mol Biol Evol 24:1080–1090

    CAS  PubMed  Google Scholar 

  • Rokas A, Carroll SB (2005) More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol Biol Evol 22:1337–1344

    CAS  PubMed  Google Scholar 

  • Rokas A, Holland PW (2000a) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459

    PubMed  Google Scholar 

  • Rokas A, Holland PW (2000b) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459

    PubMed  Google Scholar 

  • Rokas A, Kruger D, Carroll SB (2005) Animal evolution and the molecular signature of radiations compressed in time. Science 310:1933–1938

    PubMed  Google Scholar 

  • Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804

    CAS  PubMed  Google Scholar 

  • Roy SW, Gilbert W (2005) Resolution of a deep animal divergence by the pattern of intron conservation. Proc Natl Acad Sci U S A 102:4403–4408

    CAS  PubMed  Google Scholar 

  • Roy SW, Irimia M (2008) Rare genomic characters do not support Coelomata: intron loss/gain. Mol Biol Evol 25:620–623

    CAS  PubMed  Google Scholar 

  • Ruiz-Trillo I, Riutort M, Littlewood DT, Herniou EA, Baguna J (1999) Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. Science 283:1919–1923

    CAS  PubMed  Google Scholar 

  • Schubert M, Escriva H, Xavier-Neto J, Laudet V (2006) Amphioxus and tunicates as evolutionary model systems. Trends Ecol Evol 21:269–277

    PubMed  Google Scholar 

  • Scotland RW, Olmstead RG, Bennett JR (2003) Phylogeny reconstruction: the role of morphology. Syst Biol 52:539–548

    PubMed  Google Scholar 

  • Shubin N, Tabin C, Carroll S (1997) Fossils, genes and the evolution of animal limbs. Nature 388:639–648

    CAS  PubMed  Google Scholar 

  • Siewing R (1976) Probleme und neuere Erkenntnisse in der Großsystematik der Wirbellosen. Verh Dtsch Zool Ges 70:59–83

    Google Scholar 

  • Stach T, Winter J, Bouquet JM, Chourrout D, Schnabel R (2008) Embryology of a planktonic tunicate reveals traces of sessility. Proc Natl Acad Sci U S A 105:7229–7234

    CAS  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    CAS  PubMed  Google Scholar 

  • Struck TH, Fisse F (2008) Phylogenetic position of Nemertea derived from phylogenomic data. Mol Biol Evol 23:2058–2071

    Google Scholar 

  • Swofford DL (1990) PAUP: Phylogenetic analysis using parsimony, Version 3.0. Illinois Natural History Survey, Champaign

    Google Scholar 

  • Tautz D (2004) Segmentation. Dev Cell 7:301–312

    CAS  PubMed  Google Scholar 

  • Telford MJ, Holland PW (1993) The phylogenetic affinities of the chaetognaths: a molecular analysis. Mol Biol Evol 10:660–676

    CAS  PubMed  Google Scholar 

  • Valentine JW (1997) Cleavage patterns and the topology of the metazoan tree of life. Proc Natl Acad Sci U S A 94:8001–8005

    CAS  PubMed  Google Scholar 

  • Wagner GP (2007) The developmental genetics of homology. Nat Rev Genet 8:473–479

    CAS  PubMed  Google Scholar 

  • Wanninger A, Koop D, Bromham L, Noonan E, Degnan BM (2005) Nervous and muscle system development in Phascolion strombus (Sipuncula). Dev Genes Evol 215:509–518

    PubMed  Google Scholar 

  • Willmer P (1990) Invertebrates relationships: patterns in animal evolution. Cambrige University Press, Cambridge

    Google Scholar 

  • Winchell CJ, Sullivan J, Cameron CB, Swalla BJ, Mallatt J (2002) Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. Mol Biol Evol 19:762–776

    CAS  PubMed  Google Scholar 

  • Wolf YI, Rogozin IB, Koonin EV (2004) Coelomata and not Ecdysozoa: evidence from genome-wide phylogenetic analysis. Genome Res 14:29–36

    CAS  PubMed  Google Scholar 

  • Zheng J, Rogozin IB, Koonin EV, Przytycka TM (2007) Support for the Coelomata clade of animals from a rigorous analysis of the pattern of intron conservation. Mol Biol Evol 24:2583–2592

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinand Marlétaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Marlétaz, F., Le Parco, Y. (2010). Phylogeny of Animals: Genomes Have a Lot to Say. In: Cock, J., Tessmar-Raible, K., Boyen, C., Viard, F. (eds) Introduction to Marine Genomics. Advances in Marine Genomics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8639-6_4

Download citation

Publish with us

Policies and ethics