Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 166))

  • 902 Accesses

Abstract

The success of the use of Einstein addition along with Einstein velocity dependent relativistic mass in the determination of various hyperbolic triangle centers is demonstrated in this book. But, looking at the relativistic velocity addition law and its underlying hyperbolic geometry through the lens of cosmological stellar aberration leads to a startling conclusion: relativistic velocities add in the cosmos according to the gyroparallelogram addition law of hyperbolic geometry, which is commutative. This Epilogue of the book may thus serve as the Prologue for the future of Einstein’s special relativity theory as a theory regulated by the hyperbolic geometry of Bolyai and Lobachevsky.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bottema, O.: On the medians of a triangle in hyperbolic geometry. Can. J. Math. 10, 502–506 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  2. Demirel, O., Soyturk, E.: The hyperbolic Carnot theorem in the Poincaré disc model of hyperbolic geometry. Novi Sad J. Math. 38(2), 33–39 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Einstein, A.: Zur Elektrodynamik Bewegter Körper. Ann. Phys. (Leipz.) 17, 891–921 (1905). [On the electrodynamics of moving bodies] (We use the English translation in [13] or in [34], or in http://www.fourmilab.ch/etexts/einstein/specrel/www/)

    Article  ADS  MATH  Google Scholar 

  4. Everitt, C.: In: Fairbank, J.D., Deaver, B.S. Jr., Everitt, C.W.F. (eds.) New Frontiers in Physics, pp. 587–639. Freeman, San Francisco (1988)

    Google Scholar 

  5. Everitt, F.C.W., Fairbank, W.M., Schiff, L.I.: Theoretical background and present status of the Stanford relativity—gyroscope experiment. In: The Significance of Space Research for Fundamental Physics. Proceedings of the Colloquium of the European Space Research Organization at Interlaken, Switzerland, Sept. 4, 1969. For current status see the project website at URL: http://einstein.stanford.edu

  6. GP-B: Gravity Probe B. http://www.nasa.gov/mission_pages/gpb/index.html

  7. GP-B: Gravity Probe B. http://einstein.stanford.edu

  8. Lämmerzahl, C.: Relativity and technology. Ann. Phys. (8) 15(1–2), 5–18 (2006)

    Article  MathSciNet  Google Scholar 

  9. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Course of Theoretical Physics, vol. 2, p. 402. Pergamon, Oxford (1975). Fourth revised English edition. Translated from the Russian by Morton Hamermesh

    Google Scholar 

  10. Miller, A.I.: Albert Einstein’s Special Theory of Relativity, p. 446. Springer, New York (1998). Emergence (1905) and early interpretation (1905–11), Includes a translation by the author of Einstein’s “On the electrodynamics of moving bodies”. Reprint of the 1981 edition

    Book  Google Scholar 

  11. Pyenson, L.: Relativity in late Wilhelmian Germany: the appeal to a preestablished harmony between mathematics and physics. Arch. Hist. Exact Sci. 27(2), 137–155 (1982)

    MathSciNet  MATH  Google Scholar 

  12. Rindler, W.: Introduction to Special Relativity, p. 185. Clarendon, New York (1982)

    MATH  Google Scholar 

  13. Rindler, W.: Relativity: Special, General, and Cosmological, 2nd edn., p. 430. Oxford University Press, New York (2006)

    Google Scholar 

  14. Silagadze, Z.K.: Relativity without tears. Acta Phys. Pol. B 39(4), 811–885 (2008). MR2399620 (2009b:83009)

    MathSciNet  ADS  Google Scholar 

  15. Sonmez, N.: A trigonometric proof of the Euler theorem in hyperbolic geometry. Algebras Groups Geom. 26(1), 75–79 (2009)

    MathSciNet  Google Scholar 

  16. Stewart, A.B.: The discovery of stellar aberration. Sci. Am. March, 100–108 (1964)

    Google Scholar 

  17. Synge, J.L.: Relativity: The Special Theory, 2nd edn., p. 450. North-Holland, Amsterdam (1965)

    Google Scholar 

  18. Ungar, A.A.: Thomas rotation and the parametrization of the Lorentz transformation group. Found. Phys. Lett. 1(1), 57–89 (1988)

    Article  MathSciNet  Google Scholar 

  19. Ungar, A.A.: Beyond the Einstein Addition Law and Its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces. Fundamental Theories of Physics, vol. 117, p. 413. Kluwer Academic, Dordrecht (2001)

    Book  Google Scholar 

  20. Ungar, A.A.: Analytic Hyperbolic Geometry: Mathematical Foundations and Applications, p. 463. World Scientific, Hackensack (2005)

    Book  Google Scholar 

  21. Ungar, A.A.: Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory of Relativity, p. 628. World Scientific, Hackensack (2008)

    Book  MATH  Google Scholar 

  22. Ungar, A.A.: A Gyrovector Space Approach to Hyperbolic Geometry. Morgan & Claypool, San Rafael (2009)

    MATH  Google Scholar 

  23. Varičak, V.: Beiträge zur nichteuklidischen geometrie. Jahresber. Dtsch. Math.-Ver. 17, 70–83 (1908). [Contributions to non-Euclidean geometry]

    MATH  Google Scholar 

  24. Varičak, V.: Anwendung der Lobatschefskjschen Geometrie in der Relativtheorie. Phys. Z. 11, 93–96 (1910)

    MATH  Google Scholar 

  25. Vermeer, J.: A geometric interpretation of Ungar’s addition and of gyration in the hyperbolic plane. Topol. Appl. 152(3), 226–242 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Walter, S.: The non-Euclidean style of Minkowskian relativity. In: Gray, J.J. (ed.) The Symbolic Universe: Geometry and Physics 1890–1930, pp. 91–127. Oxford University Press, New York (1999)

    Google Scholar 

  27. Walter, S.: Personal communication (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ungar .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ungar, A.A. (2010). Epilogue. In: Hyperbolic Triangle Centers. Fundamental Theories of Physics, vol 166. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8637-2_10

Download citation

Publish with us

Policies and ethics