Skip to main content

Cholesterol Specificity of Some Heptameric β-Barrel Pore-Forming Bacterial Toxins: Structural and Functional Aspects

  • Chapter
  • First Online:
Cholesterol Binding and Cholesterol Transport Proteins:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 51))

Abstract

Apart from the thiol-specific/cholesterol-dependent cytolysin family of toxins (see Chapter 20) there are a number of other unrelated bacterial toxins that also have an affinity for plasma membrane cholesterol. Emphasis is given here on the Vibrio cholerae cytolysin (VCC) and the cytolysins from related Vibrio species. The inhibition of the cytolytic activity of these toxins by prior incubation with extracellular cholesterol or low density lipoprotein emerges as a unifying feature, as does plasma membrane cholesterol depletion. Incubation of VCC with cholesterol produces a heptameric oligomer, which is not equivalent to the pre-pore since it is unable to penetrate the plasma membrane. In structural terms, the precise sequence of VCC monomer binding to membrane, oligomer formation and pore insertion through the bilayer has yet to be fully defined. Several other bacterial toxins have a dependency for cholesterol, although the available data is limited in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrami, L., Liu, S., Cosson, P., Leppla, S.H., Van Der Goot F.G., 2003, Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell Biol. 160:321–328.

    Article  CAS  PubMed  Google Scholar 

  • Bhakdi, S., Füssle, R., Tranum-Jensen, J., 1981, Staphylococal α-toxin: Oligomerization of hydrophilic monomers to form amphiphilic hexamers induced through contact with deoxycholate micelles. Proc. Natl. Acad. Sci. USA 78:5475–5479.

    Article  CAS  PubMed  Google Scholar 

  • Blaustein, R.O., Koehler, T.M., Collier, R.J., Finkelstein, A., 1989, Anthrax toxin: Channel-forming activity of protective antigen in planar phospholipid bilayers. Proc. Natl. Acad. Sci. USA 86:2209–2213.

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay, K., Banerjee, K.K., 2003, Unfolding of Vibrio cholerae hemolysin induced oligomerization of the toxin monomer. J. Biol. Chem. 278:38470–38475.

    Article  CAS  PubMed  Google Scholar 

  • Choi, B.-H., Park, B.-H, Kwak, Y.-G., 2004, Vibrio vulnificus cytolysin forms anion-selective pores on the CPAE cells, a pulmonary endothelial cell line. Korean J. Phjysiol. Pharmacol. 8:259–264.

    CAS  Google Scholar 

  • Epstein, E.A., and Chapman, M.R., 2008, Polymerizing the fibre between bacteria and host cells: the biogenesis of functional amyloid fibres. Cell. Microbiol. 10:1413–1420.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson, M.R., Xu, X.J., Houston, C.W., Petrerson, J.W., Coppenhaver, D.H., Popov, V.L., Chopra, A.K., 1997, Hyperproduction, purification, and mechanism of action of the cytotoxic enterotoxin produced by Aeromonas hydrophilia. Infect. Immun. 65:4299–4308.

    CAS  PubMed  Google Scholar 

  • Figueirêdo, P.M., Catani,C.F., Yano, T., 2003, Thiol-independent activity of a cholesterol-binding enterohemolysin produced by enteropathogenic Escherichia coli. Braz. J. Med. Biol.Res. 36:1495–1499.

    Article  PubMed  Google Scholar 

  • Forti, S., Menestrina,G., 1989, Staphylococcal alpha-toxin increases the permeability of lipid vesicles by cholesterol- and pH-dependent assembly of oligomeric channels. Eir. J. Biochem. 181:767–773.

    Article  CAS  Google Scholar 

  • Fukui, T., Shiraki, K., Hamada, D., Hara, K., Miyata, T., Fujiwara, S., Mayanagi, K., Tanaagihara, K., Iida, T., Fukusaki, E., Imanaka, T., Honda, T., Tanagihara, I., 2005, Thermostable direct hemolysin of Vibrio parahaemolyticus is a bacterial reversible amyloid toxin. Biochemistry 44:9825–9832.

    Article  CAS  PubMed  Google Scholar 

  • Galdiero, S., Galdiero, M., Pedone, C., 2007, β-Barrel membrane bacterial proteins: Structure function, assembly and interaction with lipids. Curr. Protein Peptide Sci. 8:63–82.

    Article  CAS  Google Scholar 

  • Galdiero, S., Gouaux, E., 2004, High resolution crystallographic studies of alpha-hemolysin-phospholipid complexes define heptamer-lipid head group interactions: implication for understanding protein-lipid interactions. Protein Sci. 13:1503–1511.

    Article  CAS  PubMed  Google Scholar 

  • Gao, M., Schulten, K., 2006, Onset of anthrax toxin pore formation. Biophys. J. 90:3267–3279.

    Article  CAS  PubMed  Google Scholar 

  • Geny, B., Popoff, M.R., 2006, Bacterial protein toxins and lipids: pore formation or toxin entry into cells. Biol. Cell 98:667–678.

    Article  CAS  PubMed  Google Scholar 

  • Giesmann, T. Jank, T., Gerhard, R., Maier, E., Jut, I., Benz, R., Aktories, K., 2006, Cholesterol-dependent pore formation of Clostridium difficile toxin A. J. Biol. Chem. 281:10808–10815.

    Article  Google Scholar 

  • Gouaux, E., 1998, α-Hemolysin from Staphylococcus aureus: An archetype of β-barrel, channel-forming toxins. J. Struct. Biol. 121:110–122.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez, M.G., Saka, H.A., Chinen, I., Zoppino, F.C.M., Yoshimori, T., Bocco, J.L., Colombo, M.I., 2007, Protective role of autophagy against Vibrio cholerae cytolysin, a pore-foprming toxin from V. cholerae. Proc. Natl. Acad. Sci. USA 104:1829–1834.

    Article  CAS  Google Scholar 

  • Harris, J.R., Bhakdi, S., Meissner, U., Scheffler, D., Bittman, R., Li, G., Zitzer, A., Palmer, M., 2002, Interaction of the Vibrio cholerae cytolysin (VCC) with cholesterol, some cholesterol esters, and cholesterol derivatives: a TEM study. J. Struct. Biol. 139:122–135.

    Article  PubMed  Google Scholar 

  • Harris, J.R., Scheffler, D., 2002, Routine preparation of air-dried negatively stained and unstained specimens on holey carbon support films: A review of applications. Micron 33:461–480.

    Google Scholar 

  • Hayward, AR.D., Cain, R.J., McGhie,E.J., Phillips, N., Garner, M.J., Koronakis, V., 2005, Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Molec. Microbiol. 56:590–603.

    Article  CAS  Google Scholar 

  • He, Y., Olson, R., 2010, Three-dimensional structure of the detergent-solubilized Vibrio cholerae cytolysin (VCC) heptamer by electron cryomicroscopy. J. Struct. Biol. 169:6–13.

    Google Scholar 

  • Honda, T., Finkelstein, R.A., 1979, Purification and characterization of a hemolysin produced by Vibrio cholera biotype El Tor: another toxic substance produced by cholera vibrios. Infect. Immun. 26:1020–1027.

    CAS  PubMed  Google Scholar 

  • Ikigai, H., Akatsuka, A., Tsujiyama, H., Nakae, T., Shimamura, T., 1996, Mechanism of membrane damage by El Tor hemolysin of Vibrio choleerae O1. Infect. Immun. 64:2968–2973.

    CAS  PubMed  Google Scholar 

  • Ikigai, H., Ono, T., Iwata, M., Nakae, T., Shimamura, T., 1997. El Tor hemolysin of Vibrio cholerae O1 forms channels in planar lipid membranes. FEMS Miorobiol. Lett. 150:249–254.

    Article  CAS  Google Scholar 

  • Ikigai, H., Otsuru, H., Yamamoto, K., Shimamura, T., 2006, Structural requirements of cholesterol for binding to Vibrio cholerae hemolysin. Microbiol. Immunol. 50:751–757.

    CAS  PubMed  Google Scholar 

  • Kim, B.-S., Kim, J.-S., 2002, Cholesterol induce oligomerization of Vibrio vulnificus cytolysin specifically. Exp. Molec. Med. 34:239–242.

    CAS  Google Scholar 

  • Kim, G.-T., Lee, J.-Y., Huh, S.-H., Yu, J.-H., Kong, I.-S., 1997, Nucleotide sequence of the vmbH gene encoding hemolysin from Vibrio mimicus. Biochim. Biophys. Acta 1360:102–104.

    CAS  PubMed  Google Scholar 

  • Kim, J.-S., 1997, Cytotoxicity of Vitrio vulnificus cytolysin on pulmonary endothelial cells. Exp. Molec. Med. 29:117–121.

    CAS  Google Scholar 

  • Koehler, T.M., Collier, R.J., 1991, Anthrax toxin protective antigen: low-pH-induced hydrophobicity and channel formation in liposomes. Mol. Microbiol. 5:1501–1506.

    Article  CAS  PubMed  Google Scholar 

  • Krasilnikov, O.V., Merzlyak, P.G., Lima, V.L.M., Zitzer, A.O., Valeva, A., Yuldasheva, L.N., 2007, Pore formation by Vibrio cholerae cytolysin requires cholesterol in both monolayers of the target membrane. Biochimie 89:271–277.

    Article  Google Scholar 

  • Lacy, D.B., Wiglesworth, D.J., Melnyk, R.A., Harrison, S.C., Collier, R.J., 2004, Structure of heptameric protective antigen bound to an anthrax receptor: A role for receptor in pH-dependent pore formation. Proc. Natl. Acad. Sci. USA 101:13147–13151.

    Article  CAS  PubMed  Google Scholar 

  • Lashuael, H.A., Lansbury P.T., 2006, Are amyloid diseases cased by protein aggregates that mimic bacterial pore-forming proteins? Quart. Rev. Biophys. 39:167–201.

    Article  Google Scholar 

  • Löhner, S., Walev, I., Boukhallouk, F., Palmer, M., Shakdi, S., Valeva, A., 2009, Pores formation by Vibrio cholerae cytolysin follows the same archetypical mode as β-barrel toxins from gram-positive organisms. The FASEB J. doi: 10.1096/fj.08-127688.

    Google Scholar 

  • Milne, J.C., Furlong, D., Hanna, P.C., Wall, J.S., Collier, R.J., 1994, Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J. Biol. Chem. 269: 20607–20612.

    CAS  PubMed  Google Scholar 

  • Miyata. S., Minami, J., Tamai, E., Matsushita, O., Shimamoto,S., Okabe, A., 2002, Clostridium perfringens ɛ-toxin forms a heptameric pore within the detergent-insoluble microdomains of Madin-Darby canine kidney cells and rat synaptosomes. J. Biol.Chem. 277:39463–39468.

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi, S.-I., Morita, A., Teranishi, T., Tomochika, K.-I., Yamamoto, S., Shinoda, S., 2004, An exocellular cytolysin produced by Vibrio vulnificus CDC B3547, a clinical isolate in Biotype 2 (Serovar E). J. Toxicol. Toxin Rev. 23:111–121.

    CAS  Google Scholar 

  • Moshioni, M., Tombola, F., de Bernard, M., Coelho, A., Zitzer, A., Zoratti, M., Montecucco, C., 2002, The Vibrio cholerae hemolysin anion channel is required for cell vacuolation and death. Cell Microbiol. 4:397–409.

    Article  Google Scholar 

  • Mosser, E.M., Res, R.F., 2006, The Bacillus anthracis cholesterol-dependent cytolysin, Anthrolysin O, kills human neutrophils, monocytes and macrophages. BMC Microbiol. 6:56 Doi: 10.1186/1417-2180-6-56.

    Article  PubMed  Google Scholar 

  • Nagamune, K., Yamamoto, K., Naka, A., Matsuyama, J., Miwatani, T., Honda, T., 1996, In vitro proteolytic processing and activation of the recombinant precursor of El Tor cytolysin/hemolysin (pro-HlyA) of Vibrion cholerae by soluble hemagglutinin/protease of V. cholearae, trypsin, and other proteases. Infect. Immune. 64:4655–4658.

    CAS  Google Scholar 

  • Olson, R., Gouaux, E., 2003, Vibrio cholerase cytolysin is composed of an α-hemolysin-like core. Protein Sci. 12:379–383.

    Article  CAS  PubMed  Google Scholar 

  • Olson, R., Gouaux, E., 2005, Crystal structure of the Vibrio cholerae cytolysin (VCC) protoxin andits assembly into a heptameric transmembrane pore. J. Mol. Biol. 350:997–1016.

    Article  CAS  PubMed  Google Scholar 

  • Orlandi, P.A., Fishman, P.H., 1998, Filipin-dependent inhibition of cholera toxin: Evidence for toxin internalisation and activation through caveolae-like domains. J. Cell Biol. 141: 905–915.

    Article  CAS  PubMed  Google Scholar 

  • Palmer, M., 2004, Cholesterol and the activity of bacterial toxins. FEMS Microbiol. Lett. 238:281–289.

    Article  CAS  PubMed  Google Scholar 

  • Pantano, S., Montecucco, C., 2006, A molecular model of the Vibrio cholerae cytolysin transmembrane pore. Toxicon 47:35–40.

    Article  CAS  PubMed  Google Scholar 

  • Park, K-H., Yang, H.-B., Kim, H.-G., Lee, Y.-R., Hur, H., Kim, J.-S., Koo, B.-S., Han, M.-K., Kim, J.-H., Jeong, Y.-J., Kim, J.-S., 2005, Low density lipoprotein inactivates Vibrio vulnificus cytolysin through the oligomerization of toxin monomer. Med. Microbiol. Immunol. 194:137–141.

    Article  CAS  PubMed  Google Scholar 

  • Petosa, C., Collier, R.J., Klimpel, K.R., Leppla, S.H., Liddington, R.C., 1997, Crystal structure of the anthrax toxin protective antigen. Nature 385:833–838.

    Article  CAS  PubMed  Google Scholar 

  • Popova, T.C., Millis, B., Bradburne, C., Nazarenko, S., Bailey, C., Chandhoke, V., Papov, S.C., 2006, Acceleration of epithelial cell syndecan-I sheddingby anthrax haemolytic virulence factors. BMC Microbiol. 6: 8 doi:10.1186/1471-2180-6-8.

    Article  PubMed  Google Scholar 

  • Puhar, A., Montecucco, C., 2007, Where and how do anthrax toxins exit endosomes and intoxicate host cells? Trends Microbiol. 15:477–482.

    CAS  PubMed  Google Scholar 

  • Rebolj, K., Ulrih, N.P., Maček, P., Sepčić, 2006, Steroid structural requirements for interaction of ostreolysin, a lipid-raft binding cytolysin, with lipid monolayers and bilayers. Biochim. Biophys. Acta 1758:1662–1670.

    Article  CAS  PubMed  Google Scholar 

  • Ren, G., Quispe, J., Leppla, S.H., Mitra, A.K., 2004, Large-scale structural changes accompany binding of lethal factor to anthrax protective antigen: A cryo-electron microscopic study. Structure 12:2059–2066.

    Article  CAS  PubMed  Google Scholar 

  • Saka, H.A., Bidinost, C., Sola, C., Carranza, P., Collino, C., Oritz, S., Echenique, J.R., Bocco, J.L., 2008, Vibrio cholerae cytolysin is essential for high enterotoxicity and apoptosis induction produced by a cholera toxin gene-negative V. cholerae non-O1, non-O139 strain. Microb. Pathog. 44:118–128.

    Article  CAS  PubMed  Google Scholar 

  • Santelli, E., Bankston, L.A., Leppla, S.H., Liddington, R.C., 2004, Crystal structure of a complex between anthrax toxin and its host cell receptor. Nature 430:905–908.

    Article  CAS  PubMed  Google Scholar 

  • Sato, Y., Kaneko, K., Sasahara, T., Inoue, M., 2006, Novel pathogenic mechanism in a clinical isolate of Yersina enterocolitica KU14. J. Microbiol. 44:98–105.

    CAS  PubMed  Google Scholar 

  • Shinoda, S., Miyoshi, S.-I., 2006, Hemolysin of vibrio cholerae and other vibrio species. In: The Comprehensive Sourcebook of Bacterial Protein Toxins, (Eds) Alouf, X and Popoff, X., Elsevier Ltd, pp. 748–762.

    Google Scholar 

  • Shinoda, S., Miyoshi, S.-I., Yamanaka, H., Miyoshi-Nakahara, N., 1985, Some properties of Vibrio vulnificus hemolysin. J. Microbiol. Immunol. 29:583–590.

    CAS  Google Scholar 

  • Shogomori, H., Futerman, A.H., 2001, Cholesterol depletion by methyl-β-cyclodextrin blocks cholera toxin transport from endosomes to the Golgi apparatus ain hippocampal neurons. J. Neurochem. 78:991–999.

    Article  CAS  PubMed  Google Scholar 

  • Srisailam, S., Wang, H.-M., Kumart, T.K,S., Rajalingam, D., Sivaraja, V., Sheu, H.-S., Chang, Y.-C., Yu, C., 2002, Amyloid-like fibril formation in an all β-barrel protein involves the formation of partially structured intermediate(s). J. Biol. Chem. 277:19027–19036.

    Article  CAS  PubMed  Google Scholar 

  • Tobjes, N., Wallace, B.A.., Bayley, H., 1985, Secondary structure and assembly mechanism of an oligomeric channel protein. Biochemistry 24:1915–1920.

    Article  Google Scholar 

  • Tzokov, S.B., Wyborn, N.R., Stillman, T.J., Jamieson, S., Czudnochowski, N., Artymiuk, P.J., Green, J., Bullough, P.A., 2005, Structure of the hemolysin E (HlyE, ClyA, and SheA) channel in its membrane-bound form. J. Biol. Chem. 281:233042–23049.

    Google Scholar 

  • Valeva, A., Walev, I., Boukhjallouk, F., Wassenaar, T.M., Heinz, N., Hedderich, J., Lautwein, S., Möcking, M., Weis, S., Zitzer, A., Bhakdi, S., 2005, Identification of the membrane penetrating domain of Vibrio cholerae cytolysin as a beta-barrel structure. Mol. Microbiol. 57:124–131.

    Article  CAS  PubMed  Google Scholar 

  • Valeva, A., Walev, I., Weis, S., Boukhallouk, F., Wassenaar, T.M., Bhakdi, S., 2008, Pro-inflammatory feedback activation cycle evoked by attack of Vibrio cholerae cytolysin on human neutrophil granulocytes. Med. Microbiol. Immunol. 197:285–293.

    Article  CAS  PubMed  Google Scholar 

  • Valeva, A., Walev, I., Weis, S., Boukhallouk, F., Wassenaar, T.M., Endres, K., Fahrenholz, F., Bhakdi, S., Zitzer, A., 2004, A cellular metalloproteinase activates Vibrio cholerae pro-cytolysin. J. Biol. Chem. 279:25143–25148.

    Google Scholar 

  • Wallace, A.J., Stillman, T.J., Atkins, A., Jamieson, S.J., Bulloch, P.A., Green, J., Artymuik, P.J., 2000, E. coli hemolysin E (HlyE, ClyA, SheA): X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy. Cell 100:265–276.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, M.T., Atkinson, D., 1986, Physical properties of apoprotein B in mixed micelles with sodium deoxycholate and in a vesicle with dimyristoyl phosphatidylcholine. J. Lipid Res. 27:316–325.

    CAS  PubMed  Google Scholar 

  • Yamamoto, K., Ichinose, Y., Shinagawa, H., Makino, K., Nakata, A., Iwanaga, M., Honda, T., Miwatani, T., 1990, Two-step processing for activation of the cytolysin/hemolysin of Vibrio cholerae O1 biotype El Tor: nucleotide sequence of the structural gene (hlyA) and characterization of the processed products. Infect. Immun. 58:4106–4116.

    CAS  PubMed  Google Scholar 

  • Yamamoto, K., Wright, A.C., Kaper, J.B., Morris, J.G., 1990, The cytolysin gene of Vibrio vulnificus: Sequence and relationship to the Vibrio cholerae El Tor hemolysin gene. Infect. Immun. 58:2706–2709.

    CAS  PubMed  Google Scholar 

  • Yoshiike, Y., Kayed, R., Milton, S.C., Takashima, A., Glabe, C.G., 2007, Pore-forming proteins share structural and functional homology with amyloid oligomers. Neuromol. Med. 9:270–275.

    Article  CAS  Google Scholar 

  • Yu, H.N., Lee, Y.R., Park, K.H., Rah, S.Y., Noh, E.M., Song, E.K., Han, M.K., Kim, B.S., Lee, S.H., Kim, J.S., 2007, Membrane cholesterol is required for activity of Vibrio vulnificus cytolysin. Arch. Microbiol. 187:467–473.

    Article  CAS  PubMed  Google Scholar 

  • Yuldasheva, L.N., Merzlyak, P.G., Zitzer, A.O., Rodrigues, C.G., Bhakdi, S., Krasilnikov, O.V., 2001, Lumen geometry of ion channels formed by Vibrio cholerae EL Tor cytolysin elucidated by nonelectrolyte exclusion. Biochim. Biophys. Acta 1512:53–63.

    Article  CAS  PubMed  Google Scholar 

  • Zamotin, V., Gharibyan, A., Gibanova, N.V., Lavrikova, M.A., Dolgikh, D.A., Kirpichnikov, M.P., Kostanyan, I.A., Morozova-Roche, L.A., 2006, Cytotoxicity of ablebetin oligomers depends on cross-β-sheet formation. FEBS Lett. 580:2451–2457.

    Article  CAS  PubMed  Google Scholar 

  • Zitzer, A., Bittman, R., Verbicky, C.A., Erukulla, R.K., Bhadki, S., Weis, S., Valeva, A., Palmer, M., 2001, Coupling of cholesterol and cone-shaped lipids in bilayers augments membrane permeabilization by the cholesterol-specific toxins streptolysin O and Vibrio cholerae cytolysin. J. Biol. Chem. 276:14628–14633.

    Article  CAS  PubMed  Google Scholar 

  • Zitzer, A., Harris, J.R., Kemminer, S.E., Zitzer, O., Bhakdi, S., Meuthing, J., Palmer, M., 2000, Vibrio cholerae cytolysin: assembly and membrane insertion of the oligomeric pore are tightly linked and are not detectably restricted by membrane fluidity. Biochim. Biophys. Acta 1509:264–274.

    Article  CAS  PubMed  Google Scholar 

  • Zitzer, A., Palmer, M., Weller, U., Wassenaar, T., Biermann, C., Tranum-Jensen, J., Bhakdi, S., 1997b, Mode of primary binding to target membranes and pore formation induced by Vibrio cholerae cytolysin (hemolysin). Eur. J. Biochem. 247:209–216.

    Article  CAS  PubMed  Google Scholar 

  • Zitzer, A., Walev, I., Palmer, M., Bhakdi, S., 1995, Characterization of Vibrio cholerae El Tor cytolysin as an oligomerizing pore-forming toxin. Med. Microbiol. Immunol. 184:37–44.

    Article  CAS  PubMed  Google Scholar 

  • Zitzer, A., Wassenaar, T.M., Walev, I., Bhakdi,S., 1997a, Potent membrane-permeabilizing and cytocidal action of Vibrio cholerae cytolysin on human intestinal cells. Infect. Immun. 65:1293–1298.

    CAS  PubMed  Google Scholar 

  • Zitzer, A., Westover, E.J., Covey, D.F., Palmer, M., 2003, Differential interaction of the two cholesterol-dependent membrane-damaging toxins, streptolysin O and Vibrio cholerae cytolysin with enantiomeric cholesterol. FEBS Lett. 553:229–231.

    Article  CAS  PubMed  Google Scholar 

  • Zitzer, A., Westover, E.J., Covey, D.F., Palmer, M., 2003, Differential interaction of the two cholesterol-dependent, membrane-damaging toxins, streptolysin O and Vibrio cholerae cytolysin, with enantiomeric cholesterol. FEBS Lett. 553:229–231.

    Article  CAS  PubMed  Google Scholar 

  • Zitzer, A.O., Nakisbekov, N.O., Li, A.V., Semiotrochev, V.L., Kiseliov, Yu.L., Muratkhodjaev, J.N., Krasilnikov, O.V., Ezepchuk, Yu.V., 1993, Entero-cytolysin (EC) from Vibro cholerae non-O1 (some properties and pore-forming activity). Zentralbl. Bakteriol. 279:494–504.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Robin Harris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Harris, J.R., Palmer, M. (2010). Cholesterol Specificity of Some Heptameric β-Barrel Pore-Forming Bacterial Toxins: Structural and Functional Aspects. In: Harris, J. (eds) Cholesterol Binding and Cholesterol Transport Proteins:. Subcellular Biochemistry, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8622-8_21

Download citation

Publish with us

Policies and ethics