Skip to main content

High-Voltage MOSFET Modeling

  • Chapter
Compact Modeling

Abstract

In many new applications like communication and automotive electronics the usage of integrated high voltage MOS transistors (LDMOS and DMOS) requires highly accurate compact models. In this chapter we present a deep look into special LDMOS transistor behavior and discuss state of the art sub-circuit modeling with BSIM/EKV core and JFET/Resistor approach. Parasitic diode and bipolar effects are discussed and modeling suggestions are presented. The EKV high voltage model developed by Swiss Federal Institute of Technology (EPFL) and the MM20 high voltage model introduced by NXP Research (formerly Philips Research) Laboratories is demonstrated in detail. The first CMC (Compact Modeling Council) standard high voltage MOSFET model HiSIM_HV developed by Hiroshima University is explained as well. Finally, characterization and measurement strategies for LDMOS modeling are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://home.hiroshima-u.ac.jp/usdl/HiSIM_HV/index.html. Cited 2 December 2009

  2. http://en-origin.nxp.com/models/hv_models. Cited 2 December 2009

  3. Aarts, A.C.T., Kloosterman, W.J.: Compact modeling of high-voltage LDMOS devices including quasi-saturation. IEEE Trans. Elecron Devices 53(4), 897–902 (2006)

    Article  Google Scholar 

  4. Aarts, A.C.T., D’Halleweyn, N., van Langevelde, R.: A surface potential-based high-voltage compact LDMOS transistor model. IEEE Trans. Electron Devices 52(5), 999–1007 (2005)

    Article  Google Scholar 

  5. ACCENT Diva. http://findarticles.com/p/articles/mi_m0EIN/is_2001_July_9/ai_76390652. Cited 2 December 2009

  6. Agilent 4285A. http://www.home.agilent.com/. Cited 2 December 2009

  7. Agilent 415x or B1500A. http://www.home.agilent.com/. Cited 2 December 2009

  8. Agilent, Ten nanosecond pulsed IV parametric test solution. Technical Overview (2006)

    Google Scholar 

  9. AGILENT B15xx. http://www.home.agilent.com/. Cited 2 December 2009

  10. Anghel, C.: High voltage devices for standard MOS technologies—characterisation and modelling. Doctor Thesis, Lausanne, EPFL (2004)

    Google Scholar 

  11. Anghel, C., et al.: Investigations and physical modelling of saturation effects in lateral DMOS transistor architectures based on the concept of intrinsic drain voltage. In: ESSDERC, pp. 399–402, September 2001

    Google Scholar 

  12. Anghel, C., Gillon, R., et al.: Self-heating characterization and extraction method for thermal resistance and capacitance in high voltage MOSFETs. In: Automacs, EC Project

    Google Scholar 

  13. AURIGA AU4750. http://www.auriga-ms.com/charmain.shtml. Cited 2 December 2009

  14. Baylis, C.P. II: Understanding pulsed IV measurement waveforms. In: IEEE EDMO 2003, p. 223 (2003)

    Google Scholar 

  15. Berkner, Modeling self heating using HICUM. In: HICUM Workshop TU Dresden (HP85124) (2003)

    Google Scholar 

  16. Canepari, A., Bertrand, G., Giry, A., Minondo, M., Blanchet, F., Jaouen, H., Reynard, B., Jourdan, N., Chante, J.-P.: LDMOS modeling for analog and RF circuit design. In: Proceedings of ESSDERC, Grenoble, France (2005)

    Google Scholar 

  17. Chauhan, Y.S., Krummenacher, F., Anghel, C., Gillon, R., Bakeroot, B., Declercq, M., Ionescu, A.M.: Analysis and modeling of lateral non-uniform doping in high-voltage MOSFETs. In: IEDM Tech. Dig., pp. 8.3.1–8.3.4, December 2006

    Google Scholar 

  18. Chen, J.F., Tian, K.-S., Chen, S.-Y., Wu, K.-M., Liu, C.M.: On-resistance degradation induced by hot-carrier injection in LDMOS transistors with STI in the drift region. IEEE Electron Device Lett. 29(9), 1071–1073 (2008)

    Article  Google Scholar 

  19. Contiero, C., Murari, B., Vigna, B.: Progress in power ICs and MEMS. In: Proceedings of 2004 International Symposium on Power Semiconductor Devices and ICs, Kitakyushu, pp. 3–12 (2004)

    Google Scholar 

  20. Efland, T., Malhi, S., Bailey, W., Kwon, O.K., Ng, W.T., Torreno, M., Keller, S.: An optimized RESURF LDMOS power device module compatible with advanced logic processes. In: IEDM Tech. Dig., pp. 237–240 (1992)

    Google Scholar 

  21. Enz, C., Krummenacher, F., Vittoz, E.: An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. J. Analog Integr. Circuits Signal Process. 83–114 (1995)

    Google Scholar 

  22. Farhanah, A., et al.: Modeling 32 V asymmetric LDMOS using Aurora and Hspice Level 66. In: MOS AK (2007)

    Google Scholar 

  23. Frere, S.F., Moens, P., Desoete, B., Wojciechowski, D., Walton, A.J.: An improved LDMOS transistor model that accurately predicts capacitance for all bias conditions. In: IEEE International Conference on Microelectronics Test Structures, pp. 75–79, April 2005

    Google Scholar 

  24. Griffith, E.C., Kelly, S.C., Power, J.A., Bain, D., Whiston, S., Elebert, P., O’Neil, M.: Capacitance modelling of LDMOS transistors. In: IEEE Solid-State Device Research Conference, pp. 624–627, September 2000

    Google Scholar 

  25. Hussein, B., Declercq, M.: High Voltage Devices and Circuits in Standard CMOS Technologies. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  26. Jang, J., Arnborg, T., Yu, Z., Dutton, R.W.: Circuit model for power LDMOS including quasi-saturation. In: Proc. IEEE Int. Conf. on Simulation of Semiconductor Processes and Devices, SISPAD’99, pp. 15–18 (1999)

    Google Scholar 

  27. Jin, W., et al.: Self-heating characterization for SOI MOSFET based on AC output conductance. In: IEDM (1999)

    Google Scholar 

  28. Keithley 4200. http://www.keithley.com/. Cited 2 December 2009

  29. Keithley 4200. http://www.keithley.com/. Cited 2 December 2009

  30. Keithley PIV-A. http://www.keithley.com/. Cited 2 December 2009

  31. Keithley PIV-Q. http://www.keithley.com/. Cited 2 December 2009

  32. Knaipp, M., Roehrer, G., Minixhofer, R., Seebacher, E.: Investigations on the high current behavior of lateral diffused high-voltage transistors. IEEE Trans. Electron Devices 51(10), 1711–1720 (2004)

    Article  Google Scholar 

  33. Knaipp, M., Park, J.M., Vescolli, V., Roehrer, G., Minixhofer, R.: Investigations on an isolated lateral high-voltage n-channel LDMOS transistor with a typical breakdown of 150 V. In: Proceedings of the 36th European Solid-State Device Research Conference, ESSDRC 2006 (2006)

    Google Scholar 

  34. Labate et al.: Scalable electrical model for a SOI-RF-LDMOS including drain drift region resistance self-heating effects. In: MOS-AK (2006)

    Google Scholar 

  35. Liang, Y.C., Samudra, G.S.: Power Microelectronics, Devices and Process Technologies. World Scientific, Singapore (2009)

    Book  Google Scholar 

  36. Ludikhize, A.: Kirk effect limitations in HV-ICs. In: Proc. ISPSD, pp. 249–252 (1994)

    Google Scholar 

  37. Miura-Mattausch, M., Sadachika, N., Miyake, M., Navarro, D., Ezaki, T., Mattausch, H.J., Ohguro, T., Iizuka, T., Taguchi, M., Miyamoto, S., Inagaki, R., Furui, Y., Fudanuki, N., Yoshida, T.: HiSIM2.4.0: Advanced MOSFET model for the 45 nm technology node and beyond. In: Proceedings of the NSTI-Nanotech 2007, pp. 479–484, Santa Clara (2007)

    Google Scholar 

  38. Oh, S.-Y., Ward, D.E., Dutton, R.W.: Transient analysis of MOS transistors. J. Solid-State Circuits SSC-15, 636–643 (1980)

    Google Scholar 

  39. Oritsuki, Y., Yokomiti, M., Sakuda, T., Sadachika, N., Miyake, M., Kajiwara, T., Kukuchihara, H., Yoshida, T., Feldmann, U., Mattausch, H.J., Miura Mattausch, M.: HiSIM-LDMOS/HV: A complete surface-potential based MOSFET model for high-voltage applications. In: Proceedings of the NSTI-Nanotech 2008, pp. 893–896, Boston (2008)

    Google Scholar 

  40. Paasschens, J.C.J., et al.: Dependence of thermal resistance on ambient and actual temperature. In: BCTM (2004)

    Google Scholar 

  41. Passant Baylis, C. II: Improved current-voltage methods for RF transistor characterization. Master Thesis

    Google Scholar 

  42. Perugupalli, P., Trivedi, M., Shenai, K., Leong, S.K.: Modeling and characterization of an 80 V silicon LDMOSFET for emerging RFIC applications. IEEE Trans. Electron Devices 45(7), 1468–1478 (1998)

    Article  Google Scholar 

  43. Posch, W.: Measurement and modelling of high-voltage MOS field effect transistors. Master Thesis, Institute of Solid-State Physics, Technical University Graz (2002)

    Google Scholar 

  44. Schrems, M., et al.: Scalable high voltage CMOS technology for smart power and sensor applications. E I Elektrotech. Informationstech. 125(4), 109–117 (2008)

    Article  Google Scholar 

  45. Sischka, F., Characterisation Handbook, p. 2, 8.10.01J

    Google Scholar 

  46. Skadron, K., et al.: A Short Tutorial on Thermal Modeling and Management (2008), coolchips08

    Google Scholar 

  47. Trivedi, M., Khandelwal, P., Shenai, K.: Performance modeling of RF power MOSFETS. IEEE Trans. Electron Devices 46(8), 1794–1802 (1999)

    Article  Google Scholar 

  48. Vestling, L.: Design and modeling of high-frequency LDMOS transistors. Ph.D. Thesis, Uppsala University, February (2002)

    Google Scholar 

  49. Yokomichi, M., Sadachika, N., Miyake, M., Kajiwara, T., Mattausch, H.J., Miura-Mattausch, M.: Laterally diffused metal oxide semiconductor model for device and circuit optimization. Jpn. J. Appl. Phys. 47, 2560–2563 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Seebacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Seebacher, E., Molnar, K., Posch, W., Senapati, B., Steinmair, A., Pflanzl, W. (2010). High-Voltage MOSFET Modeling. In: Gildenblat, G. (eds) Compact Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8614-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8614-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8613-6

  • Online ISBN: 978-90-481-8614-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics