Skip to main content

Multi-Gate MOSFET Compact Model BSIM-MG

  • Chapter
Compact Modeling

Abstract

As the scaling of conventional planar CMOS is reaching its limits, multiple-gate CMOS structures will likely take up the baton. To facilitate circuit simulation in such advanced technologies, we have developed BSIM-MG: a versatile compact model for multi-gate MOSFETs. In this chapter separate formulations for common multi-gate and independent multi-gate MOSFETs are presented. The core I-V and C-V models are derived and agree well with TCAD simulations without using fitting parameters, reflecting the predictivity and scalability of the model. Physical effects such as volume inversion, short channel effects and quantum mechanical effects are included in the model. We verify BSIM-MG against triple-gate SOI FinFET experimental data. The model fits data very well across a wide range of biases, gate lengths and temperatures. It is also computationally efficient and suitable for simulating large circuits. Finally, several multi-gate circuit simulation examples are presented to demonstrate the use of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter we present equations for N-type devices.

  2. 2.

    A substrate still exists underneath the buried oxide or the shallow trench isolation (Figs. 13.1(a)–(c)), but has little influence on the electrostatics in the body.

  3. 3.

    Because of this assumption, BSIM-IMG does not model the case when then back surface enters into strong inversion. This is currently being investigated.

  4. 4.

    The core model assumes μ is constant. High field effects are accounted for later through the incorporation of real device effects.

  5. 5.

    An alternative definition is \(C_{xy}=-\frac{\partial Q_{x}}{\partial V_{y}}\). See, e.g., [38].

References

  1. Frank, D.J., Dennard, R.H., Nowak, E., Solomon, P.M., Taur, Y., Wong, H.-S.P.: Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001)

    Article  Google Scholar 

  2. Assaderaghi, F., Sinitsky, D., Bokor, J., Ko, P.K., Gaw, H., Hu, C.: High-field transport of inversion-layer electrons and holes including velocity overshoot. IEEE Trans. Electron Devices 44, 664–671 (1997)

    Article  Google Scholar 

  3. Lundstrom, M.: Elementary scattering theory of the Si MOSFET. IEEE Electron Device Lett. 18, 361–363 (1997)

    Article  Google Scholar 

  4. Ghani, T., et al.: A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors. In: Technical Digest, IEEE International Electron Devices Meeting, pp. 407–410 (2003)

    Google Scholar 

  5. Lee, W.-C., Hu, C.: Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction- and valence-band electron and hole tunneling. IEEE Trans. Electron Devices 48, 1366–1373 (2001)

    Article  Google Scholar 

  6. Mistry, K., et al.: 45 nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. In: Technical Digest, IEEE International Electron Devices Meeting, pp. 247–250 (2007)

    Google Scholar 

  7. Colinge, J.-P.: FinFETs and Other Multi-gate Transistors. Springer, Berlin (2008)

    Book  Google Scholar 

  8. Asenov, A.: Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 m MOSFET’s: a 3-D “atomistic” simulation study. IEEE Trans. Electron Devices 45, 2505–2513 (1998)

    Article  Google Scholar 

  9. Kim, H.-S., Lee, S.-B., Choi, D.-U., Shim, J.-H., Lee, K.-H., Lee, K.-P., Kim, K.-N., Park, J.-W.: A high-performance 16M DRAM on a thin film SOI. In: Digest of Technical Papers, Symposium on VLSI Technology, pp. 143–144 (1995)

    Google Scholar 

  10. Huang, X., Lee, W.-C., Kuo, C., Hisamoto, D., Chang, L., Kedzierski, J., Anderson, E., Takeuchi, H., Choi, Y.-K., Asano, K., Subramanian, V., King, T.-J., Bokor, J., Hu, C.: Sub 50-nm FinFET: PMOS. In: Technical Digest, IEEE International Electron Devices Meeting, pp. 67–70 (1999)

    Google Scholar 

  11. Hu, C.: MOSFETs in ICs–scaling, leakage, and other topics. In: Modern Semiconductor Devices for Integrated Circuits. Prentice Hall, New York (2009)

    Google Scholar 

  12. Yang, F.-L., Chen, H.-Y., Chen, F.-C., Chan, Y.-L., Yang, K.-N., Chen, C.-J., Tao, H.-J., Choi, Y.-K., Liang, M.-S., Hu, C.: 35 nm CMOS FinFETs. In: Digest of Technical Papers, Symposium on VLSI Technology, pp. 104–105 (2002)

    Google Scholar 

  13. von Arnim, K., et al.: A low-power multi-gate FET CMOS technology with 13.9 ps inverter delay, large-scale integrated high performance digital circuits and SRAM. In: Digest of Technical Papers, Symposium on VLSI Technology, pp. 106–107 (2007)

    Google Scholar 

  14. Kedzierski, J., et al.: Metal-gate FinFET and fully-depleted SOI devices using total gate silicidation. In: Technical Digest, IEEE International Electron Devices Meeting, pp. 247–250 (2002)

    Google Scholar 

  15. Kavalieros, J., Doyle, B., Datta, S., Dewey, G., Doczy, M., Jin, B., Lionberger, D., Metz, M., Rachmady, W., Radosavljevic, M., Shah, U., Zelick, N., Chau, R.: Tri-gate transistor architecture with high-k gate dielectrics, metal gates and strain engineering. In: Digest of Technical Papers, Symposium on VLSI Technology, pp. 50–51 (2006)

    Google Scholar 

  16. Sheu, B., Scharfetter, D.L., Ko, P.-K., Jeng, M.-C.: BSIM: Berkeley short-channel IGFET model for MOS transistors. IEEE J. Solid-State Circuits 22, 558–566 (1987)

    Article  Google Scholar 

  17. BSIM (Berkeley Short-channel IGFET Model). http://www-device.eecs.berkeley.edu/~bsim/

  18. Su, P., Fung, S.K.H., Tang, S., Assaderaghi, F., Hu, C.: BSIMPD: a partial-depletion SOI MOSFET model for deep-submicron CMOS designs. In: Proc. of the IEEE Custom Integrated Circuits Conference, pp. 197–200 (2000)

    Google Scholar 

  19. Chan, M., Su, P., Wan, H., Lin, C.-H., Fung, S.K.-H., Niknejad, A.M., Hu, C., Ko, P.K.: Modeling the floating-body effects of fully depleted, partially depleted, and body-grounded SOI MOSFETs. Solid-State Electron. 48, 969–978 (2004)

    Article  Google Scholar 

  20. Dunga, M.V., Lin, C.-H., Lu, D.D., Xiong, W., Cleavelin, C.R., Patruno, P., Hwang, J.-R., Yang, F.-L., Niknejad, A.M., Hu, C.: BSIM-MG: A versatile multi-gate FET model for mixed-signal design. In: Digest of Technical Papers, Symposium on VLSI Technology, pp. 60–61 (2007)

    Google Scholar 

  21. Lu, D.D., Dunga, M.V., Lin, C.-H., Niknejad, A.M., Hu, C.: A multi-gate MOSFET compact model featuring independent-gate operation. In: Technical Digest, IEEE International Electron Devices Meeting, pp. 565–568 (2007)

    Google Scholar 

  22. Fossum, J.G., Ge, L., Chiang, M.-H., Trivedi, V.P., Chowdhury, M.M., Matthew, L., Workman, G.O., Nguyen, B.-Y.: A process/physics-based compact model for nonclassical CMOS device and circuit design. Solid-State Electron. 48, 919–926 (2004)

    Article  Google Scholar 

  23. Yu, B., Song, J., Yuan, Y., Lu, W.-Y., Taur, Y.: A unified analytic Drain V Current model for multiple-gate MOSFETs. IEEE Trans. Electron Devices 55, 2157–2163 (2008)

    Article  Google Scholar 

  24. Dessai, G., Dey, A., Gildenblat, G., Smit, G.D.J.: Symmetric linearization method for double-gate and surrounding-gate MOSFET models. Solid-State Electron. 53, 548–556 (2009)

    Article  Google Scholar 

  25. Sallese, J.-M., Krummenacher, F., Pregaldiny, F., Lallement, C., Roy, A., Enz, C.: A design oriented charge-based current model for symmetric DG MOSFET and its correlation with the EKV formalism. Solid-State Electron. 49, 485–489 (2005)

    Article  Google Scholar 

  26. Pei, G., Ni, W., Kammula, A.V., Minch, B.A., Kan, E.C.-C.: Physical compact model of DG MOSFET for mixed-signal circuit applications—Part I: model description. IEEE Trans. Electron Devices 50, 2135–2143 (2003)

    Article  Google Scholar 

  27. Ishimura, K., Sadachika, N., Kusu, S., Miura-Mattausch, M.: Compact model HiSIM-DG both for symmetrical and asymmetrical DG-MOSFET structures. In: Proc. Workshop on Compact Modeling (2009)

    Google Scholar 

  28. International Technology Roadmap for Semiconductors. http://www.itrs.net/

  29. Takayanagi, K., Kondo, Y., Ohnishi, H.: Suspended gold nanowires: ballistic transport of electrons. J. Jpn. Soc. Appl. Phys. Int. (JSAPI) 3, 3–8 (2001)

    Google Scholar 

  30. Fried, D., Duster, J.S., Kornegay, K.T.: High-performance p-type independent-gate FinFETs. IEEE Electron Device Lett. 25, 199–201 (2004)

    Article  Google Scholar 

  31. Yang, I.Y., Vieri, C., Chandrakasan, A., Antoniadis, D.A.: Back-gated CMOS on SOIAS for dynamic threshold voltage control. IEEE Trans. Electron Devices 44, 822–831 (1997)

    Article  Google Scholar 

  32. Liu, H., Taur, Y.: An analytic potential model for symmetric and asymmetric DG MOSFETs. IEEE Trans. Electron Devices, 1161–1168 (2006)

    Google Scholar 

  33. Dunga, M.V., Lin, C.-H., Niknejad, A.M., Hu, C.: BSIM-CMG: a compact model for multi-gate transistors. In: FinFETs and Other Multi-gate Transistors, pp. 113–153 (2008)

    Google Scholar 

  34. Lu, D.D.: Efficient surface potential calculation for the asymmetric independent double-gate MOSFET. UC Berkeley Master’s Report (2007)

    Google Scholar 

  35. Brews, J.R.: A charge-sheet model of the MOSFET. Solid-Sate Electron. 21, 345–355 (1978)

    Article  Google Scholar 

  36. Synopsys Inc.: Taurus Process and Device User Manual (2003)

    Google Scholar 

  37. Oh, S.-Y., Ward, D.E., Dutton, R.W.: Transient analysis of MOS transistors. IEEE Trans. Electron Devices 27, 1571–1578 (1980)

    Article  Google Scholar 

  38. Tsividis, Y.: Operation and Modeling of the MOS Transistor, 2nd edn. Oxford (1999)

    Google Scholar 

  39. Venugopolan, S.: A Compact Model for Cylindrical Gate MOSFET for circuit simulations. UC Berkeley Master’s Report (2010)

    Google Scholar 

  40. Dunga, M.V.: Nanoscale CMOS modeling. Ph.D. Thesis, UC Berkeley (2007)

    Google Scholar 

  41. Dunga, M.V., Lin, C.-H., Xi, X., Lu, D.D., Niknejad, A.M., Hu, C.: Modeling advanced FET technology in a compact model (invited). IEEE Trans. Electron Devices 53, 1971–1978 (2006)

    Article  Google Scholar 

  42. Taur, Y.: An analytical solution to a double-gate MOSFET with undoped body. IEEE Electron Device Lett. 21, 245–247 (2000)

    Article  Google Scholar 

  43. Sebah, P., Gourdon, X.: Newton’s method and high order iterations (2001). http://numbers.computation.free.fr/Constants/Algorithms/newton.ps

  44. Trivedi, V.P., Fossum, J.G.: Quantum-mechanical effects on the threshold voltage of undoped double-gate MOSFETs. IEEE Electron Device Lett. 26, 579–582 (2005)

    Article  Google Scholar 

  45. Lin, C.-H.: Compact modeling of nanoscale CMOS. Ph.D. Thesis, UC Berkeley (2007)

    Google Scholar 

  46. Liu, Z.-H., Hu, C., Huang, J.-H., Chan, T.-Y., Jeng, M.-C., Ko, P.K., Cheng, Y.C.: Threshold voltage model for deep-submicrometer MOSFET’s. IEEE Trans. Electron Devices 40, 86–95 (1993)

    Article  Google Scholar 

  47. BSIM4 User’s Manual. http://www-device.eecs.berkeley.edu/~bsim3/bsim4_get.html

  48. BSIMSOI User’s Manual. http://www-device.eecs.berkeley.edu/~bsimsoi/get.html

  49. Suzuki, K., Sugii, T.: Analytical models for n+-p+ double-gate SOI MOSFET’s. IEEE Trans. Electron Devices 42, 1940–1948 (1995)

    Article  Google Scholar 

  50. Pei, G., Kedzierski, J., Oldiges, P., Ieong, M., Kan, E.C.-C.: FinFET design considerations based on 3-D simulation and analytical modeling. IEEE Trans. Electron Devices 49, 1411–1419 (2002)

    Article  Google Scholar 

  51. Jin, W., Fung, S.K.H., Liu, W., Chan, P.C.H., Hu, C.: Self-heating characterization for SOI MOSFET based on AC output conductance. In: Technical Digest, IEEE International Electron Devices Meeting, pp. 175–178 (1999)

    Google Scholar 

  52. Hung, K.K., Ko, P.K., Hu, C., Cheng, Y.C.: A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors. IEEE Trans. Electron Devices 37, 654–665 (1990)

    Article  Google Scholar 

  53. Cao, K.M., Lee, W.-C., Liu, W., Jin, X., Su, P., Fung, S.K.H., An, J.X., Yu, B., Hu, C.: BSIM4 gate leakage model including source-drain partition. In: Technical Digest, IEEE International Electron Devices Meeting, pp. 815–818 (2000)

    Google Scholar 

  54. Wann, H.-J., Ko, P.K., Hu, C.: Gate-induced band-to-band tunneling leakage current in LDD MOSFETs. In: Technical Digest, IEEE International Electron Devices Meeting, pp. 147–150 (1992)

    Google Scholar 

  55. Yao, S., Morshed, T.H., Lu, D.D., Venugopalan, S., Niknejad, A.M., Hu, C.: A global parameter extraction procedure for multi-gate MOSFETs. To Be Presented in the 23rd International Conference on Microelectronic Test Structures (2010)

    Google Scholar 

  56. Cheng, Y., Hu, C.: MOSFET Modeling and BSIM3 User’s Guide. Springer, Berlin (1999)

    Google Scholar 

  57. Banna, S.R., Chan, P.C.H., Ko, P.K., Nguyen, C.T., Chan, M.: Threshold voltage model for deep-submicrometer fully depleted SOI MOSFET’s. IEEE Trans. Electron Devices 42, 1949–1955 (1995)

    Article  Google Scholar 

  58. Guo, Z., Balasubramanian, S., Zlatanovici, R., King, T.-J., Nikolić, B.: FinFET-based SRAM design. In: International Symposium on Low Power Electronics and Design (ISLPED), pp. 2–7 (2005)

    Google Scholar 

  59. Oldiges, P., Lin, Q., Petrillo, K., Sanchez, M., Ieong, M., Hargrove, M.: Modeling line edge roughness effects in sub 100 nanometer gate length devices. In: Proc. Int. Conference on Simulation of Semiconductor Devices and Processes (SISPAD), pp. 131–134 (2000)

    Google Scholar 

  60. Lu, D.D., Lin, C.-H., Yao, S., Xiong, W., Bauer, F., Cleavelin, C.R., Niknejad, A.M., Hu, C.: Design of FinFET SRAM cells using a statistical compact model. In: Proc. Int. Conference on Simulation of Semiconductor Devices and Processes (SISPAD), pp. 127–130 (2009)

    Google Scholar 

  61. Lin, C.-H., Dunga, M.V., Lu, D.D., Niknejad, A.M., Hu, C.: Performance-aware corner model for design for manufacturing. IEEE Trans. Electron Devices 56, 595–600 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere appreciation to Dr. Mohan Dunga for his pioneering development of BSIM-IMG and BSIM-CMG. We would also like to thank Dr. Weize Xiong and Dr. Rinn Cleavelin at Texas Instrument, Dr. Paul Patruno at SOITEC, Dr. Jiunn-Ren Hwang and Dr. Fu-Liang Yang at Taiwan Semiconductor Manufacturing Corporation for generously sharing their measured FinFET data. The work presented in this chapter would not have been possible without the funding support by Semiconductor Research Corporation (Task ID: 1451.001) and IMPACT, UC Discovery, and its industrial sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darsen Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lu, D., Lin, CH., Niknejad, A., Hu, C. (2010). Multi-Gate MOSFET Compact Model BSIM-MG. In: Gildenblat, G. (eds) Compact Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8614-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8614-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8613-6

  • Online ISBN: 978-90-481-8614-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics