Skip to main content

Decentralized Spatial Computing in Urban Environments

  • Chapter
  • First Online:
Book cover Geospatial Analysis and Modelling of Urban Structure and Dynamics

Part of the book series: GeoJournal Library ((GEJL,volume 99))

Abstract

This chapter presents the concept of decentralized spatial computing (DeSC) as a way to embed dynamic spatial data capture and processing capabilities within our built urban environment. The chapter illustrates the potential of DeSC for safeguarding privacy in a dynamic location-based services scenario: Mobile service users protect their potentially sensitive location by the use of a decentralized query algorithms, solely collaborating with peers close by and thereby excluding the privacy bottleneck of an omniscient global service provider. In an extensive set of consecutive experiments several decentralized query algorithms were tested, trading the level of privacy for the quality of service. The use of a real world test bed, – a small part of Ordnance Survey’s OS MasterMap® Integrated Transport Network™ Layer for Southampton – underlines the experiments’ validity. The chapter concludes with a research and development agenda for DeSC in the urban context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bettini, C., Wang, X. & Jajodia, S. (2005). Protecting privacy against location-based personal identification. In W. Jonker & M. Petkovic (Eds.), Secure data management (pp. 185–199). (Heidelberg: Springer)

    Google Scholar 

  • Braginsky, D. & Estrin, D. (2002). Rumor routing algorthim for sensor networks. In Proceedings of the 1st ACM international workshop on wireless sensor networks and applications (pp. 22–31). (Atlanta, GA: ACM Press)

    Google Scholar 

  • Cheng, Z., & Heinzelman, W.B. (2005). Flooding strategy for target discovery in wireless networks. Wireless Networks, 11, 607–618

    Article  Google Scholar 

  • Dillenburg, J.F., Wolfson, O. & Nelson, P.C. (2002). The intelligent travel assistant. Paper presented at the IEEE 5th International Conference on Intelligent Transportation Systems, Singapore

    Google Scholar 

  • Dobson, J.E. & Fisher, P.F. (2003). Geoslavery. IEEE Technology and Society Magazine, 22(1), 47–52

    Article  Google Scholar 

  • Duckham, M. & Kulik, L. (2005). Simulation of obfuscation and negotiation for location privacy. In A.G. Cohn & D.M. Mark (Eds.), Spatial information theory: international conference, COSIT 2005, Ellicottville, NY, USA, September 14–18, 2005, (pp. 31–48). (Heidelberg: Springer)

    Google Scholar 

  • Duckham, M., Nittel, S. & Worboys, M.F. (2005). Monitoring dynamic spatial fields using responsive geosensor networks. Paper presented at the ACM GIS, Bremen, Germany

    Google Scholar 

  • Estrin, D., Govindan, R. & Heidemann, J. (2000). Embedding the internet – introduction. Communications of the ACM, 43(5), (38–41).

    Article  Google Scholar 

  • Galton, A. (2001). Space, time, and the representation of geographical reality. Topoi-An International Review of Philosophy, 20(2), (173–187).

    Google Scholar 

  • Galton, A. (2003). Desiderata for a spatio-temporal geo-ontology. In W. Kuhn, M.F. Worboys & S. Timpf (Eds.), Spatial information theory. foundations of geographic information science: international conference, COSIT 2003, Ittingen, Switzerland, September 24–28 (pp.1-12). (Heidelberg: Springer)

    Google Scholar 

  • Galton, A. & Worboys, M. (2005). Processes and events in dynamic geo-networks. In M.A. Rodrìguez, I.F. Cruz, M.J. Egenhofer & S. Levashkin (Eds.), Proceedings of first international conference on geospatial semantics (pp. 45–59). (Heidelberg: Springer)

    Google Scholar 

  • Greenfield, A. (2006). Everyware: the dawning age of ubiquitous computing. (Berkeley: New Riders Press)

    Google Scholar 

  • Grenon, P. & Smith, B. (2004). SNAP and SPAN: towards dynamic spatial ontology. Spatial cognition and computation, 4(1), 69–103

    Article  Google Scholar 

  • Kaasinen, E. (2003). User needs for location-aware mobile services. Personal and Ubiquitous Computing, 7(1), 70–79

    Article  Google Scholar 

  • Karp, B. & Kung, H.T. (2000). GPSR: greedy perimeter stateless routing for wireless networks. Paper presented at the Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, Boston, MA

    Google Scholar 

  • Kido, H., Yanagisawa, Y. & Satoh, T. (2005). An anonymous communication technique using dummies for location-based services. Paper presented at the International Conference on Pervasive Services (ICPS '05)

    Google Scholar 

  • Kosch, T., Adler, C.J., Eichler, S., Schroth, C. & Strassberger, M. (2006). The scalability problem of vehicular ad hoc networks and how to solve it. Wireless Communications, IEEE [see also IEEE Personal Communications], 13(5), 22–28

    Article  Google Scholar 

  • Langheinrich, M. (2001). Privacy by design – principles of privacy-aware ubiquitous systems. In G. Abowd, B. Brumitt, & S. Shafer. (Eds.), Ubicomp 2001: ubiquitous computing (pp. 273–291). (New York: Springer)

    Google Scholar 

  • Laube, P. & Duckham, M. (2009). Decentralized spatial data mining for geosensor networks. In H.J. Miller & J. Han (Eds.), Geographic data mining and knowledge discovery 2nd (pp. 409–430). (London: CRC Press)

    Google Scholar 

  • Lynch, N. (1996). Distributed algorithms. (San Mateo, CA: Morgan Kaufmann)

    Google Scholar 

  • Mauve, M., Widmer, A. & Hartenstein, H. (2001). A survey on position-based routing in mobile ad hoc networks. Network, IEEE, 15(6), 30–39

    Article  Google Scholar 

  • Nittel, S., Duckham, M. & Kulik, L. (2004a). Information dissemination in mobile ad-hoc geosensor networks. Paper presented at the Geographic Information Science, GIScience, Heidelberg

    Google Scholar 

  • Nittel, S., Stefanidis, A., Cruz, I., Egenhofer, M.J., Goldin, D., Howard, A., Labrinidis, A., Madden, S., Voisard, A, & Worboys, M.F. (2004b). Report from the first workshop on geo sensor networks. ACM SIGMOD Record, 33(1)

    Google Scholar 

  • Rule, J., McAdam, D., Stearn, L. & Uglow, D. (1980). Politics of privacy, (New York: New American Library)

    Google Scholar 

  • Stewart Hornsby, K. & Cole, S. (2007). Modeling moving geospatial objects from an event-based perspective. Transactions in GIS, 11(4), 555–573

    Article  Google Scholar 

  • Verykios, V.S., Damiani, M.L. & Gkoulalas-Divanis, A. (2008). Privacy and security in spatiotemporal data and trajectories. In F. Giannotti & D. Pedreschi (Eds.), Mobility, data mining and privacy (pp. 213–240). (Heidelberg: Springer)

    Google Scholar 

  • Winter, S. & Nittel, S. (2006). Ad hoc shared-ride trip planning by mobile geosensor networks. International Journal of Geographical Information Science, 20(8), 899–916

    Article  Google Scholar 

  • Worboys, M.F. (2001). Modelling changes and events in dynamic spatial systems with reference to socio-economic units. In A.U. Frank, J. Raper & J.P. Cheylan (Eds.), Life and motion of socio-economic units (pp. 129–137). (London: Taylor & Francis)

    Google Scholar 

  • Worboys, M.F. (2005). Event-oriented approaches to geographic phenomena. International Journal of Geographical Information Science, 19(1), 1–28

    Article  Google Scholar 

  • Worboys, M.F. & Duckham, M. (2006). Monitoring qualitative spatiotemporal change for geosensor networks. International Journal of Geographical Information Science, 20(10), 1087–1108

    Article  Google Scholar 

  • Worboys, M.F. & Hornsby, K. (2004). From objects to events: GEM, the geospatial event model. In M.J. Egenhofer, C. Freksa & H. Miller (Eds.), 3rd International conference on geographic information science (GIScience 2004) (pp. 327–343). (Heidelberg: Springer)

    Google Scholar 

  • Yu, Y., Govindan, R. & Estrin, D. (2001). Geographical and Energy Aware Routing: A Recursive Data Dissemination Protocol for Wireless Sensor Networks (No. UCLA/CSD-TR-01-0023): UCLA Computer Science Department

    Google Scholar 

  • Zhao, F. & Guibas, L.J. (2004). Wireless sensor networks – An information processing approach. (San Francisco, CA: Morgan Kaufmann Publishers)

    Google Scholar 

Download references

Acknowledgments

Patrick Laube was funded by the Australian Research Council (ARC), Discovery grant DP0662906 and the ARC Research Network on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). Matt Duckham’s research was supported by the Australian Research Council under ARC Discovery Grant DP0662906. The authors would furthermore like to thank Ordnance Survey of Great Britain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Laube .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Laube, P., Duckham, M., Worboys, M., Joyce, T. (2010). Decentralized Spatial Computing in Urban Environments. In: Jiang, B., Yao, X. (eds) Geospatial Analysis and Modelling of Urban Structure and Dynamics. GeoJournal Library, vol 99. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8572-6_4

Download citation

Publish with us

Policies and ethics