Skip to main content

Aging and Dietary Restriction: The Yeast Paradigm

  • Chapter
  • First Online:
Calorie Restriction, Aging and Longevity
  • 1860 Accesses

Abstract

The only intervention to have been consistently shown to extend the life span in organisms ranging from yeast to monkeys is calorie restriction (CR). Saccharomyces cerevisiae is perhaps the simplest among the major model organisms established for studies of calorie restriction and aging since it is unicellular, easily manipulated genetically, amenable to a number of powerful genome/proteome-wide screening techniques, and the genes that regulates its life span play similar roles in higher eukaryotes. Here we briefly review some of the methods and discoveries related to dietary restriction (DR) and aging in yeast and discuss the potential genes and mechanisms mediated its effect on life span.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, S., Sharma, S., Agrawal, V. and Roy, N., 2005. Caloric restriction augments ROS defense in S. cerevisiae, by a Sir2p independent mechanism. Free Radic Res 39(1), 55–62.

    Article  PubMed  CAS  Google Scholar 

  • Aguilaniu, H., Gustafsson, L., Rigoulet, M. and Nystrom, T., 2003. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299, 1751–1753.

    Article  PubMed  CAS  Google Scholar 

  • Albertyn, J., Hohmann, S. and Prior, B. A., 1994. Characterization of the osmotic-stress response in Saccharomyces cerevisiae, osmotic stress and glucose repression regulate glycerol-3-phosphate dehydrogenase independently. Curr Genet 25(1), 12–18.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvidik, O. and Sinclair, D., 2003. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423(6936), 181–185.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R. M., Shanmuganayagam, D. and Weindruch, R., 2009. Caloric restriction and aging, studies in mice and monkeys. Toxicol Pathol 37(1), 47–51.

    Article  PubMed  Google Scholar 

  • Ansell, R., Granath, K., Hohman, S., Thevelein, J. M. and Adler, L., 1997. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16(9), 2179–2187.

    Article  PubMed  CAS  Google Scholar 

  • Ashrafi, K., Sinclair, D., Gordon, J. I. and Guarente, L., 1999. Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96(16), 9100–9105.

    Article  PubMed  CAS  Google Scholar 

  • Bakker, B. M., Overkamp, K. M., van Maris, A. J., Kotter, P., Lutik, M. A., van Dijken, J. P. and Pronk, J. I., 2001. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25(1), 15–37.

    Article  PubMed  CAS  Google Scholar 

  • Barros, M. H., Bandy, B., Tahara, E. B. and Kowaltowski, A. J., 2004. Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem 279(48), 49883–49888.

    Article  PubMed  CAS  Google Scholar 

  • Bartke, A., Wright, J. C., Mattison, J. A., Ingram, D. K., Miller, R. A. and Roth, G. S., 2001. Extending the lifespan of long-lived mice. Nature 414(6862), 412.

    Article  PubMed  CAS  Google Scholar 

  • Bergamini, E., Cavallini, G., Donati, A. and Gori, Z., 2003. The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensified pharmacologically. Biomed Pharmacother 57(5–6), 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Bitterman, K. J., Anderson, R. M., Cohen, H. Y., Latorre-Esteves, M. and Sinclair, D. A., 2002. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 277(47), 45099–45107.

    Article  PubMed  CAS  Google Scholar 

  • Bonawitz, N. D., Chatenay-Lapointe, M., Pan, Y. and Shadel, G. S., 2007. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab 5(4), 265–277.

    Article  PubMed  CAS  Google Scholar 

  • Borghouts, C., Benguria, A., Wawryn, J. and Jazwinski, S. M., 2004. Rtg2 protein links metabolism and genome stability in yeast longevity. Genetics 166(2), 765–777.

    Article  PubMed  CAS  Google Scholar 

  • Brunet, A., 2009. Cancer, When restriction is good. Nature 458(7239), 713–714.

    Article  PubMed  CAS  Google Scholar 

  • Budovskaya, Y. V., Stephan, J. S., Deminoff, S. J. and Herman, P. K., 2005. An evolutionary proteomics approach identifies substrates of the cAMP-dependent protein kinase. Proc Natl Acad Sci USA 102(39), 13933–13938.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D. and Guarente, L., 2007. SIR2, a potential target for calorie restriction mimetics. Trends Mol Med 13(2), 64–71.

    Article  PubMed  CAS  Google Scholar 

  • Crabtree, H. G., 1928. The carbohydrate metabolism of certain pathological overgrowths. Biochem J 22(5), 1289–1298.

    PubMed  CAS  Google Scholar 

  • Denu, J. M., 2003. Linking chromatin function with metabolic networks, Sir2 family of NAD(+)-dependent deacetylases. Trends Biochem Sci 28(1), 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Deocaris, C. C., Shrestha, B. G., Kraft, D. C., Yamasaki, K., Kaul, S. C., Rattan, S. I. and Wadhwa, R., 2006. Geroprotection by glycerol, insights to its mechanisms and clinical potentials. Ann N Y Acad Sci 1067, 488–492.

    Article  PubMed  CAS  Google Scholar 

  • Easlon, E., Tsang, F., Skinner, C., Wang, C. and Lin, S. J., 2008. The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast. Genes Dev 22(7), 931–944.

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio, P., Gattazzo, C., Battistella, L., Wei, M., Cheng, C., McGrew, K. and Longo, V. D., 2005. Sir2 blocks extreme life-span extension. Cell 123(4), 655–667.

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio, P., Liou, L. L., Moy, V. N., Diaspro, A., Valentine, J. S., Gralla, E. B. and Longo, V. D., 2003. SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163(1), 35–46.

    PubMed  CAS  Google Scholar 

  • Fabrizio, P. and Longo, V. D., 2003. The chronological life span of Saccharomyces cerevisiae. Aging Cell 2(2), 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio, P., Pozza, F., Pletcher, S. D., Gendrom, C. M. and Longo, V. D., 2001. Regulation of longevity and stress resistance by Sch9 in yeast. Science 292(5515), 288–290.

    Article  PubMed  CAS  Google Scholar 

  • Geyskens, I., Kumara, S. et al., 2000. Expression of mammalian PKB partially complements deletion of the yeast protein kinase Sch9. NATO ASI Ser. A. Life Sci. 316, 117–126.

    Google Scholar 

  • Harman, D., 1956. A theory based on free radical and radiation chemistry. J Gerontol 11, 298–300.

    Article  PubMed  CAS  Google Scholar 

  • Harris, N., Costa, V., MacLean, M., Mollapour, M., Moradas-Ferreira, P. and Piper, P. W., 2003. Mnsod overexpression extends the yeast chronological (G(0)) life span but acts independently of Sir2p histone deacetylase to shorten the replicative life span of dividing cells. Free Radic Biol Med 34(12), 1599–1606.

    Article  PubMed  CAS  Google Scholar 

  • Hlavata, L., Aguilaniu, H., Pichova, A. and Nystrom, T., 2003. The oncogenic RAS2(val19) mutation locks respiration, independently of PKA, in a mode prone to generate ROS. EMBO J 22(13), 3337–3345.

    Article  PubMed  CAS  Google Scholar 

  • Houthoofd, K., Braeckman, B. P., Lenaerts, I., Brys, K., De Vreese, A., Van Eygen, S. and Vanfleteren, J. R., 2002. Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp Gerontol 37(12), 1371–1378.

    Article  PubMed  Google Scholar 

  • Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., Wood, J. B., Zipkin, R. E., Chung, P., Kisielewski, A., Zhang, L. L., Scherer, B. and Sinclair, D. A., 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954), 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski, S. M., 2005. Rtg2 protein, at the nexus of yeast longevity and aging. FEMS Yeast Res 5(12), 1253–1259.

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski, S. M., Egilmez, N. K. and Chen, J. B., 1989. Replication control and cellular life span. Exp Gerontol 24, 423–436.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, J. C., Jaruga, E., Repnevskaya, M. V. and Jazwinski, S. M., 2000. An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 14(14), 2135–2137.

    PubMed  CAS  Google Scholar 

  • Jorgensen, P., Rupes, I., Sharom, J. R., Schneper, L., Broach, J. R. and Tyers, M., 2004. A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 18(20), 2491–2505.

    Article  PubMed  CAS  Google Scholar 

  • Juhasz, G., Puskas, L. G., Komonyi, O., Erdi, B., Maroy, P., Neufeld, T. P. and Sass, M., 2007. Gene expression profiling identifies FKBP39 as an inhibitor of autophagy in larval Drosophila fat body. Cell Death Differ 14(6), 1181–1190.

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein, M., Andalis, A. A., Fink, G. R. and Guarente, L., 2002. High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol 22(22), 8056–8066.

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein, M., Hu, D., Kerr, O., Tsuchiya, M., Westman, E. A., Dang, N., Fields, S. and Kennedy, B. K., 2005a. Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet 1(5), e69.

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein, M. and Kennedy, B. K., 2005. Large-scale identification in yeast of conserved ageing genes. Mech Ageing Dev 126(1), 17–21.

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein, M., Kirkland, K. T., Fields, S. and Kennedy, B. K., 2004. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2(9), E296.

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein, M., McDonagh, T., Heltweg, B., Hixon, J., Westman, E. A., Caldwell, S. D., Napper, A., Curtis, R., DiStefano, P. S., Fields, S., Bedalov, A. and Kennedy, B. K., 2005b. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 280(17), 17038–17045.

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein, M., McVey, M. and Guarente, L., 1999. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13(19), 2570–2580.

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein, M., Powers, R. W., 3rd, Steffen, K. K., Westman, E. A., Hu, D., Dang, N., Kerr, E. O., Kirkland, K. Y., Fields, S. and Kennedy, B. K., 2005c. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310(5751), 1193–1196.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, B. K., Austriaco, N. R., Jr. and Kennedy, B. K., 1994. Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J Cell Biol 127(6 Pt 2), 1985–1993.

    Article  PubMed  CAS  Google Scholar 

  • Kenyon, C., 2005. The plasticity of aging, insights from long-lived mutants. Cell 120(4), 449–460.

    Article  PubMed  CAS  Google Scholar 

  • Kirchman, P. A., Kim, S., Lai, C. Y. and Jazwinski, S. M., 1999. Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 152(1), 179–190.

    PubMed  CAS  Google Scholar 

  • Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T., Ohsumi, Y., Tokyuhisa, T. and Mitzushima, N., 2004. The role of autophagy during the early neonatal starvation period. Nature 432(7020), 1032–1036.

    Article  PubMed  CAS  Google Scholar 

  • Lai, C. Y., Jaruga, E., Borghouts, C. and Jazwinski, S. M., 2002. A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics 162(1), 73–87.

    PubMed  CAS  Google Scholar 

  • Lamming, D. W., Latorre-Esteves, M., Medvedik, O., Wong, S. N., Tsang, F. A., Wang, C., Lin, S. J. and Sinclair, D. A., 2005. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309(5742), 1861–1864.

    Article  PubMed  CAS  Google Scholar 

  • Lavoie, H. and Whiteway, M., 2008. Increased respiration in the sch9Delta mutant is required for increasing chronological life span but not replicative life span. Eukaryot Cell 7(7), 1127–1135.

    Article  PubMed  CAS  Google Scholar 

  • Lin, S. J., Defossez, P. A. and Guarente, L., 2000. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289(5487), 2126–2128.

    Article  PubMed  CAS  Google Scholar 

  • Lin, S. J., Ford, E., Haigis, M., Liszt, G. and Guarente, L., 2004. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18(1), 12–16.

    Article  PubMed  CAS  Google Scholar 

  • Lin, S. J., Kaeberlein, M., Andalis, A. A., Sturtz, L. A., Deffossez, P. A., Culotta, V. C., Fink, G. R. and Guarente, L., 2002. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418(6895), 344–348.

    Article  PubMed  CAS  Google Scholar 

  • Longo, V. D., 1997. The Pro-senescence Role of Ras2 in the Chronological Life Span of Yeast. University of California Los Angeles, Los Angeles, pp. 112–153.

    Google Scholar 

  • Longo, V. D., 1999. Mutations in signal transduction proteins increase stress resistance and longevity in yeast, nematodes, fruit flies, and mammalian neuronal cells. Neurobiol Aging 20(5), 479–486.

    Article  PubMed  CAS  Google Scholar 

  • Longo, V. D., 2009. Linking sirtuins, IGF-I signaling, and starvation. Exp Gerontol 44(1–2), 70–74.

    Article  PubMed  CAS  Google Scholar 

  • Longo, V. D. and Finch, C. E., 2003. Evolutionary medicine, from dwarf model systems to healthy centenarians? Science 299(5611), 1342–1346.

    Article  PubMed  CAS  Google Scholar 

  • Longo, V. D., Gralla, E. B. and Valentine, J. S., 1996. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271(21), 12275–12280.

    Article  PubMed  CAS  Google Scholar 

  • Longo, V. D. and Kennedy, B. K., 2006. Sirtuins in aging and age-related disease. Cell 126(2), 257–268.

    Article  PubMed  CAS  Google Scholar 

  • Longo, V. D., Lieber, M. R. and Vijq, J., 2008. Turning anti-ageing genes against cancer. Nat Rev Mol Cell Biol 9(11), 903–910.

    Article  PubMed  CAS  Google Scholar 

  • Lorberg, A. and Hall, M. N., 2004. TOR, the first 10 years. Curr Top Microbiol Immunol 279, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz, D. R., Cantor, C. R. and Collins, J. J., 2009. A network biology approach to aging in yeast. Proc Natl Acad Sci USA 106(4), 1145–1150.

    Article  PubMed  CAS  Google Scholar 

  • Madia, F., Gattazzo, C., Fabrizio, P. and Longo, V. D., 2007. A simple model system for age-dependent DNA damage and cancer. Mech Ageing Dev 128(1), 45–49.

    Article  PubMed  CAS  Google Scholar 

  • Madia, F., Gattazzo, C., Wei, M., Fabrizio, P., Burhans, W. C., Weinberger, M., Galbani, A., Smith, J. R., Nguyen, C., Huet, S., Comai, L. and Longo, V. D., 2008. Longevity mutation in SCH9 prevents recombination errors and premature genomic instability in a Werner/Bloom model system. J Cell Biol 180(1), 67–81.

    Article  PubMed  CAS  Google Scholar 

  • Madia, F., Wei, M., Yuan, V., Hu, J., Gattazzo, C., Pham, P., et al., 2009. Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Polzeta-dependent mechanism. J Cell Biol 186(4), 509–523. PMID: 19687253. PMCID: PMC2733759.

    Google Scholar 

  • Martin, D. E., Soulard, A. and Hall, M. N., 2004. TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 119(7), 969–979.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., 2005. Energy intake, meal frequency, and health, a neurobiological perspective. Annu Rev Nutr 25, 237–260.

    Article  PubMed  CAS  Google Scholar 

  • McCay, C. M., Crowell, M. F. and Maynard, L. A., 1935. The effect of retarded growth upon the length of life span and upon the ultimate body size. J Nutr 10, 63–79.

    CAS  Google Scholar 

  • Medvedik, O., Lamming, D. W., Kim, K. D. and Sinclair, D. A., 2007. MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol 5(10), e261.

    Article  PubMed  CAS  Google Scholar 

  • Melendez, A., Talloczy, Z., Seaman, M., Eskelinen, E. L., Hall, D. H., Levine, B. et al., 2003. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301(5638), 1387–1391.

    Article  PubMed  CAS  Google Scholar 

  • Meng, F., Park, Y. and Zhou, H., 2001. Role of proline, glycerol, and heparin as protein folding aids during refolding of rabbit muscle creatine kinase. Int J Biochem Cell Biol 33(7), 701–709.

    Article  PubMed  CAS  Google Scholar 

  • Milne, J. C., Lambert, P. D., Schenk, S., Carney, D. P., Smith, J. J., Gagne, D. J. et al., 2007. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450(7170), 712–716.

    Article  PubMed  CAS  Google Scholar 

  • Mizushima, N., Levine, B., Cuervo, A. M. and Klionsky, D. J., 2008. Autophagy fights disease through cellular self-digestion. Nature 451(7182), 1069–1075.

    Article  PubMed  CAS  Google Scholar 

  • Mortimer, R. K. and Johnston, J. R., 1959. Life span of individual yeast cells. Nature 183(4677), 1751–1752.

    Article  PubMed  CAS  Google Scholar 

  • Muller, I., Zimmermann, M., Becker, D. and Flomer, M., 1980. Calendar life span versus budding life span of Saccharomyces cerevisiae. Mech Ageing Dev 12(1), 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, C. J., Burtner, C. R., Kennedy, S. K. and Kaeberlein, M., 2008. A method for high-throughput quantitative analysis of yeast chronological life span. J Gerontol A Biol Sci Med Sci 63(2), 113–121.

    Article  PubMed  Google Scholar 

  • Nystrom, T., 2005. Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24(7), 1311–1317.

    Article  PubMed  CAS  Google Scholar 

  • Orentreich, N., Matias, J. R., DeFelice, Aa. nd and Zimmerman, J. A., 1993. Low methionine ingestion by rats extends life span. J Nutr 123(2), 269–274.

    PubMed  CAS  Google Scholar 

  • Pamplona, R., Portero-Otin, M., Sanz, A., Requena, J. and Barja, G., 2004. Modification of the longevity-related degree of fatty acid unsaturation modulates oxidative damage to proteins and mitochondrial DNA in liver and brain. Exp Gerontol 39(5), 725–733.

    Article  PubMed  CAS  Google Scholar 

  • Partridge, L., Piper, M. D. and Mair, W., 2005. Dietary restriction in Drosophila. Mech Ageing Dev 126(9), 938–950.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, K. J., Baur, J. A., Lewis, K. N., Peshkin, L., Price, N. L., Labinskyy, N. et al., 2008. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8(2), 157–168.

    Article  PubMed  CAS  Google Scholar 

  • Piper, P. W., Harris, N. L. and MacLean, M., 2006. Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronologically ageing yeast. Mech Ageing Dev 127(9), 733–740.

    Article  PubMed  Google Scholar 

  • Pohley, H. J., 1987. A formal mortality analysis for populations of unicellular organisms (Saccharomyces cerevisiae). Mech Ageing Dev 38(3), 231–243.

    Article  PubMed  CAS  Google Scholar 

  • Powers, R. W., Kaeberlein, M., Caldwell, S. D., Kennedy, B. K. and Fields, S., 2006. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20(2), 174–184.

    Article  PubMed  CAS  Google Scholar 

  • Reverter-Branchat, G., Cabiscol, E., Tamarit, J. and Ros, J., 2004. Oxidative damage to specific proteins in replicative and chronological-aged Saccharomyces cerevisiae, common targets and prevention by calorie restriction. J Biol Chem 279(30), 31983–31989.

    Article  PubMed  CAS  Google Scholar 

  • Rigoulet, M., Aguilaniu, H., Averet, N., Bunoust, O., Camougrand, N., Grandier-Vazeille, X., Larsson, C., Pahlman, I. L., Manon, S. and Gustafsson, L., 2004. Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Mol Cell Biochem 256–257(1–2), 73–81.

    Article  PubMed  Google Scholar 

  • Roosen, J., Engelen, K., Marchal, K., Mathys, J., Griffioen, G., Cameroni, E., Thevelein, J. M., De Virgilio, C., De Moor, B. and Winderickx, J., 2005. PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol 55(3), 862–880.

    Article  PubMed  CAS  Google Scholar 

  • Santangelo, G. M., 2006. Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70(1), 253–282.

    Article  PubMed  CAS  Google Scholar 

  • Sanz, A., Pamplona, R. and Barja, D., 2006. Is the mitochondrial free radical theory of aging intact? Antioxid Redox Signal 8(3–4), 582–599.

    Article  PubMed  CAS  Google Scholar 

  • Seo, J. G., Lai, C. Y., Niceli, M. V. and Jazwinski, S. M., 2007. A novel role of peroxin PEX6, suppression of aging defects in mitochondria. Aging Cell 6(3), 405–413.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, D. A., 2005. Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126(9), 987–1002.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, D. A. and Guarente, L., 1997. Extrachromosomal rDNA circles – a cause of aging in yeast. Cell 91(7), 1033–1042.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, D. A., Mills, K. and Guarente, L., 1998. Molecular mechanisms of yeast aging. Trends Biochem Sci 23(4), 131–134.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. L., Jr., McClure, J. M., Matecic, M. and Smith, J. S., 2007. Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell 6(5), 649–662.

    Article  PubMed  CAS  Google Scholar 

  • Steinkraus, K. A., Kaeberlein, M. and Kennedy, B. K., 2008. Replicative aging in yeast, the means to the end. Annu Rev Cell Dev Biol 24, 29–54.

    Article  PubMed  CAS  Google Scholar 

  • Sutphin, G. L. and Kaeberlein, M., 2008. Dietary restriction by bacterial deprivation increases life span in wild-derived nematodes. Exp Gerontol 43(3), 130–135.

    Article  PubMed  CAS  Google Scholar 

  • Swinnen, E., Wanke, V., Roosen, J., Smets, B., Dubouloz, F., Pedruzzi, I., Cameroni, E., De Virgilio, C. and Winderickx, J., 2006. Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae. Cell Div 1, 3.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya, M., Dang, N., Kerr, E. O., Hu, D., Steffen, K. K., Oakes, J. A., Kennedy, B. K. and Kaeberlein, M., 2006. Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell 5(6), 505–514.

    Article  PubMed  CAS  Google Scholar 

  • Unlu, E. S. and Koc, A., 2007. Effects of deleting mitochondrial antioxidant genes on life span. Ann N Y Acad Sci 1100, 505–509.

    Article  PubMed  CAS  Google Scholar 

  • Urban, J., Soulard, A., Huber, A., Lippman, S., Mukhopadkyay, D., Delocke, O., Wanke, V., Anrather, D., Ammerer, G., Riezman, H., Broach, J. R., De Virgilio, C., Hall, M. N. and Loewith, R., 2007. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26(5), 663–674.

    Article  PubMed  CAS  Google Scholar 

  • van Dijken, J. P., van den Bosch, E., Hermans, J. J., de Miranda, L. R. and Scheffers, W. A., 1986. Alcoholic fermentation by ‘non-fermentative’ yeasts. Yeast 2(2), 123–127.

    Article  PubMed  Google Scholar 

  • Vidan, S. and Mitchell, A. P., 1997. Stimulation of yeast meiotic gene expression by the glucose-repressible protein kinase Rim15p. Mol Cell Biol 17(5), 2688–2697.

    PubMed  CAS  Google Scholar 

  • Viswanathan, M., Kim, S. K., Berdichevsky, A. and Guarente, L., 2005. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 9(5), 605–615.

    Article  PubMed  CAS  Google Scholar 

  • Wei, M., Fabrizio, P., Hu, J., Ge, H., Cheng, C., Li, L. and Longo, V. D., 2008. Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4(1), e13.

    Article  PubMed  CAS  Google Scholar 

  • Wei, M., Fabrizio, P., Madia, F., Hu, J., Ge, H., Li, L. M. and Longo, V. D., 2009. Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet 5(5), e1000467.

    Article  PubMed  CAS  Google Scholar 

  • Wojda, I., Alonso-Monge, R., Bebelman, J. P., Mager, W. H. and Siderius, M., 2003. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Microbiology 149(Pt 5), 1193–1204.

    Article  PubMed  CAS  Google Scholar 

  • Woo, D. K. and Poyton, R. O., 2009. The absence of a mitochondrial genome in rho0 yeast cells extends lifespan independently of retrograde regulation. Exp Gerontol 44(6–7), 390–397.

    Article  PubMed  CAS  Google Scholar 

  • Yen, W. L. and Klionsky, D. J., 2008. How to live long and prosper, autophagy, mitochondria, and aging. Physiology (Bethesda) 23, 248–262.

    Article  CAS  Google Scholar 

  • Yorimitsu, T., Zaman, S., Broach, J. R. and Klionsky, D. J., 2007. Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol Biol Cell 18(10), 4180–4189.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wei, M., Madia, F., de Cabo, R., Longo, V.D. (2010). Aging and Dietary Restriction: The Yeast Paradigm. In: Everitt, A., Rattan, S., le Couteur, D., de Cabo, R. (eds) Calorie Restriction, Aging and Longevity. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8556-6_6

Download citation

Publish with us

Policies and ethics