Skip to main content

Assessing In Vivo Neurodegeneration in Schizophrenia Using Magnetic Resonance

  • Chapter
  • First Online:
Brain Protection in Schizophrenia, Mood and Cognitive Disorders
  • 1177 Accesses

Abstract

Evidence that neuronal loss occurs over the course of neuropsychiatric disorders like schizophrenia, depression and bipolar disorder has stemmed from various invasive examinations in animal models or from post-mortem examinations of human tissues. The goal of neuroprotective interventions is to prevent the neuronal damage that is presumed to result from pathophysiological mechanisms in living human patients. Consequently, it is important that clinicians be able to assess if a given individual or group of individuals with similar diagnostic features presents signs of neuronal damage or neurodegeneration, thereby confirming the adequacy of neuroprotective interventions. Furthermore, an assessment of neuronal health is crucial to evaluating the success of neuroprotective treatments. This chapter reviews and discusses the application of magnetic resonance imaging and spectroscopy to the non-invasive assessment of indices of neurodegeneration, such as grey matter loss, N-acetylaspartate loss, and glutamatergic metabolite losses in vivo, in individuals with schizophrenia. The chapter also provides an outlook towards future applications of magnetic resonance in the monitoring of neuroprotective therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1H:

hydrogen, hydrogen nuclei, proton

31P:

phosphorus, phosphorus nuclei

B0 :

static magnetic field, main field

CNS:

central nervous system

Cr:

creatine

CSF:

cerebral spinal fluid

DLPF:

dorsolateral prefrontal

γ:

gyromagnetic ratio

GABA:

γ-aminobutyric acid

Gln:

glutamine

Glu:

glutamate

Glx:

glutamate, glutamine and other overlapping metabolites

GroPCho:

Glycerophosphocholine

MRI:

magnetic resonance imaging

MRS:

magnetic resonance spectroscopy

Myo:

myo-inositol

NAA:

N-acetylaspartate

NMDA:

N-methyl-D-aspartate

NMR:

nuclear magnetic resonance

PCho:

phosphocholine

PCr:

phosphocreatine

RF:

radiofrequency

STEAM:

STimulated Echo Acquisition Mode

T:

Tesla

References

  1. Pilgrim D. The survival of psychiatric diagnosis. Soc Sci Med 2007; 65(3):536–547

    Article  PubMed  Google Scholar 

  2. Williamson P. Mind, Brain, and Schizophrenia. New York, NY: Oxford University Press, Inc.; 2006

    Google Scholar 

  3. Mueser KT, McGurk SR. Schizophrenia. Lancet 2004; 363(9426):2063–2072

    Article  PubMed  Google Scholar 

  4. Martin BA. The Clarke Institute experience with completed suicide: 1966 to 1997. Can J Psychiatry 2000; 45(7):630–638

    PubMed  CAS  Google Scholar 

  5. Gottesman II. Complications to the complex inheritance of schizophrenia. Clin Genet 1994; 46(1 Spec No):116–123

    Article  PubMed  CAS  Google Scholar 

  6. Knapp M, Mangalore R, Simon J. The global costs of schizophrenia. Schizophr Bull 2004; 30(2):279–293

    Article  PubMed  Google Scholar 

  7. What exactly is Schizophrenia? Schizophrenia Society of Canada. 2009. Ref Type: Electronic Citation

    Google Scholar 

  8. Goeree R, O’Brien BJ, Goering P et al. The economic burden of schizophrenia in Canada. Can J Psychiatry 1999; 44(5):464–472

    PubMed  CAS  Google Scholar 

  9. Oliva-Moreno J, López-Bastida J, Osuna-Guerrero R, Montejo-González AL, Duque-González B. The costs of schizophrenia in Spain. Eur J Health Econ 2006; 7(3):182–188

    Article  PubMed  Google Scholar 

  10. Barbato A. Schizophrenia and Public Health. Geneva: World Health Organisation Press; 1998. Available from: http://www.who.int/mental_health/media/en/55.pdf

  11. Grover S, Avasthi A, Chakrabarti S, Bhansali A, Kulhara P. Cost of care of schizophrenia: a study of Indian out-patient attenders. Acta Psychiatr Scand 2005; 112(1):54–63

    Article  PubMed  CAS  Google Scholar 

  12. Arredondo A, Ramos R, Zúñiga A. [Economic evaluation of the demand of medical care for mental health in Mexico: schizophrenia and depression, 1996–2000] [Article in Spanish]. Rev Invest Clin 2003; 55(1):43–50

    PubMed  Google Scholar 

  13. Leitão RJ, Ferraz MB, Chaves AC, Mari JJ. Cost of schizophrenia: direct costs and use of resources in the State of São Paulo. Rev Saude Publica 2006; 40(2):304–309

    Article  PubMed  Google Scholar 

  14. Suleiman G, Ohaeri JU, Lawal RA, Haruna AY, Orija OB. Financial cost of treating out-patients with schizophrenia in Nigeria. Br J Psychiatry 1997; 171:364–368

    Article  PubMed  CAS  Google Scholar 

  15. Weinberger DR, Wagner RL, Wyatt RJ. Neuropathological studies of schizophrenia: a selective review. Schizophr Bull 1983; 9(2):193–212

    Article  PubMed  CAS  Google Scholar 

  16. Farmer AE, McGuffin P, Gottesman II. Twin concordance for DSM-III schizophrenia. Scrutinizing the validity of the definition. Arch Gen Psychiatry 1987; 44(7):634–641

    Article  PubMed  CAS  Google Scholar 

  17. Sanches RF, Crippa JA, Hallak JE, Araujo D, Zuardi AW. Proton magnetic resonance spectroscopy of the frontal lobe in schizophrenics: a critical review of the methodology. Rev Hosp Clin Fac Med Sao Paulo 2004; 59(3):145–152

    Article  PubMed  Google Scholar 

  18. Auer DP, Wilke M, Grabner A, Heidenreich JO, Bronisch T, Wetter TC. Reduced NAA in the thalamus and altered membrane and glial metabolism in schizophrenic patients detected by 1H-MRS and tissue segmentation. Schizophr Res 2001; 52(1–2):87–99

    Article  PubMed  CAS  Google Scholar 

  19. Aydin K, Ucok A, Cakir S. Quantitative proton MR spectroscopy findings in the corpus callosum of patients with schizophrenia suggest callosal disconnection. AJNR Am J Neuroradiol 2007; 28(10):1968–1974

    Article  PubMed  CAS  Google Scholar 

  20. Bertolino A, Nawroz S, Mattay VS et al. Regionally specific pattern of neurochemical pathology in schizophrenia as assessed by multislice proton magnetic resonance spectroscopic imaging. Am J Psychiatry 1996; 153(12):1554–1563

    PubMed  CAS  Google Scholar 

  21. Bertolino A, Callicott JH, Elman I et al. Regionally specific neuronal pathology in untreated patients with schizophrenia: a proton magnetic resonance spectroscopic imaging study. Biol Psychiatry 1998; 43(9):641–648

    Article  PubMed  CAS  Google Scholar 

  22. Bertolino A, Knable MB, Saunders RC et al. The relationship between dorsolateral prefrontal N-acetylaspartate measures and striatal dopamine activity in schizophrenia. Biol Psychiatry 1999; 45(6):660–667

    Article  PubMed  CAS  Google Scholar 

  23. Bertolino A, Esposito G, Callicott JH et al. Specific relationship between prefrontal neuronal N-acetylaspartate and activation of the working memory cortical network in schizophrenia. Am J Psychiatry 2000; 157(1):26–33

    PubMed  CAS  Google Scholar 

  24. Bertolino A, Callicott JH, Mattay VS et al. The effect of treatment with antipsychotic drugs on brain N-acetylaspartate measures in patients with schizophrenia. Biol Psychiatry 2001; 49(1):39–46

    Article  PubMed  CAS  Google Scholar 

  25. Bertolino A, Sciota D, Brugaglio F et al. Working memory deficits and levels of N-acetylaspartate in patients with schizophreniform disorder. Am J Psychiatry 2003; 160(3):483–489

    Article  PubMed  Google Scholar 

  26. Blasi G, Bertolino A, Brugaglio F et al. Hippocampal neurochemical pathology in patients at first episode of affective psychosis: a proton magnetic resonance spectroscopic imaging study. Psychiatry Res 2004; 131(2):95–105

    Article  PubMed  CAS  Google Scholar 

  27. Block W, Bayer TA, Tepest R et al. Decreased frontal lobe ratio of N-acetyl aspartate to choline in familial schizophrenia: a proton magnetic resonance spectroscopy study. Neurosci Lett 2000; 289(2):147–151

    Article  PubMed  CAS  Google Scholar 

  28. Bustillo J, Lauriello J, Rowland LM et al. Longitudinal follow-up of neurochemical changes during the first year of antipsychotic treatment in schizophrenia patients with minimal previous medication exposure. Schizophr Res 2002; 58(2–3):313–321

    Article  PubMed  Google Scholar 

  29. Callicott JH, Bertolino A, Egan MF, Mattay VS, Langheim FJ, Weinberger DR. Selective relationship between prefrontal N-acetylaspartate measures and negative symptoms in schizophrenia. Am J Psychiatry 2000; 157(10):1646–1651

    Article  PubMed  CAS  Google Scholar 

  30. Deicken RF, Zhou L, Schuff N, Weiner MW. Proton magnetic resonance spectroscopy of the anterior cingulate region in schizophrenia. Schizophr Res 1997; 27(1):65–71

    Article  PubMed  CAS  Google Scholar 

  31. Deicken RF, Zhou L, Corwin F, Vinogradov S, Weiner MW. Decreased left frontal lobe N-acetylaspartate in schizophrenia. Am J Psychiatry 1997; 154(5):688–690

    PubMed  CAS  Google Scholar 

  32. Deicken RF, Zhou L, Schuff N, Fein G, Weiner MW. Hippocampal neuronal dysfunction in schizophrenia as measured by proton magnetic resonance spectroscopy. Biol Psychiatry 1998; 43(7):483–488

    Article  PubMed  CAS  Google Scholar 

  33. Deicken RF, Pegues M, Amend D. Reduced hippocampal N-acetylaspartate without volume loss in schizophrenia. Schizophr Res 1999; 37(3):217–223

    Article  PubMed  CAS  Google Scholar 

  34. Deicken RF, Johnson C, Eliaz Y, Schuff N. Reduced concentrations of thalamic N-acetylaspartate in male patients with schizophrenia. Am J Psychiatry 2000; 157(4):644–647

    Article  PubMed  CAS  Google Scholar 

  35. Delamillieure P, Fernandez J, Constans JM et al. Proton magnetic resonance spectroscopy of the medial prefrontal cortex in patients with deficit schizophrenia: preliminary report. Am J Psychiatry 2000; 157(4):641–643

    Article  PubMed  CAS  Google Scholar 

  36. Delamillieure P, Constans JM, Fernandez J et al. Proton magnetic resonance spectroscopy (1H MRS) in schizophrenia: investigation of the right and left hippocampus, thalamus, and prefrontal cortex. Schizophr Bull 2002; 28(2):329–339

    Article  PubMed  Google Scholar 

  37. Eluri R, Paul C, Roemer R, Boyko O. Single-voxel proton magnetic resonance spectroscopy of the pons and cerebellum in patients with schizophrenia: a preliminary study. Psychiatry Res 1998; 84(1):17–26

    Article  PubMed  CAS  Google Scholar 

  38. Ende G, Braus DF, Walter S et al. Effects of age, medication, and illness duration on the N-acetyl aspartate signal of the anterior cingulate region in schizophrenia. Schizophr Res 2000; 41(3):389–395

    Article  PubMed  CAS  Google Scholar 

  39. Ende G, Braus DF, Walter S, Henn FA. Lower concentration of thalamic n-acetylaspartate in patients with schizophrenia: a replication study. Am J Psychiatry 2001; 158(8):1314–1316

    Article  PubMed  CAS  Google Scholar 

  40. Ende G, Braus DF, Walter S, Weber-Fahr W, Henn FA. Multiregional 1H-MRSI of the hippocampus, thalamus, and basal ganglia in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2003; 253(1):9–15

    Article  PubMed  Google Scholar 

  41. Ende G, Hubrich P, Walter S et al. Further evidence for altered cerebellar neuronal integrity in schizophrenia. Am J Psychiatrys 2005; 162(4):790–792

    Article  Google Scholar 

  42. Fujimoto T, Nakano T, Takano T et al. Proton magnetic resonance spectroscopy of basal ganglia in chronic schizophrenia. Biol Psychiatry 1996; 40(1):14–8

    Google Scholar 

  43. Fukuzako H, Takeuchi K, Hokazono Y et al. Proton magnetic resonance spectroscopy of the left medial temporal and frontal lobes in chronic schizophrenia: preliminary report. Psychiatry Res 1995; 61(4):193–200

    Article  PubMed  CAS  Google Scholar 

  44. Fukuzako H, Kodama S, Fukuzako T et al. Subtype-associated metabolite differences in the temporal lobe in schizophrenia detected by proton magnetic resonance spectroscopy. Psychiatry Res 1999; 92(1):45–56

    Article  PubMed  CAS  Google Scholar 

  45. Galinska B, Szulc A, Tarasow E et al. Relationship between frontal N-acetylaspartate and cognitive deficits in first-episode schizophrenia. Med Sci Monit 2007; 13(Suppl 1):11–16

    PubMed  Google Scholar 

  46. Hagino H, Suzuki M, Mori K et al. Proton magnetic resonance spectroscopy of the inferior frontal gyrus and thalamus and its relationship to verbal learning task performance in patients with schizophrenia: a preliminary report. Psychiatry Clin Neurosci 2002; 56(5):499–507

    Article  PubMed  Google Scholar 

  47. Jakary A, Vinogradov S, Feiwell R, Deicken RF. N-acetylaspartate reductions in the mediodorsal and anterior thalamus in men with schizophrenia verified by tissue volume corrected proton MRSI. Schizophr Res 2005; 76(2–3):173–185

    Article  PubMed  Google Scholar 

  48. Jessen F, Scherk H, Traber F et al. Proton magnetic resonance spectroscopy in subjects at risk for schizophrenia. Schizophr Res 2006; 87(1–3):81–88

    Article  PubMed  Google Scholar 

  49. Marenco S, Bertolino A, Weinberger DR. In vivo NMR measures of NAA and the neurobiology of schizophrenia. Adv Exp Med Biol 2006; 576:227–240; discussion 361–363

    Article  PubMed  CAS  Google Scholar 

  50. Molina V, Sanchez J, Reig S et al. N-acetyl-aspartate levels in the dorsolateral prefrontal cortex in the early years of schizophrenia are inversely related to disease duration. Schizophr Res 2005; 73(2–3):209–219

    Article  PubMed  Google Scholar 

  51. Molina V, Sanz J, Sarramea F, Luque R, Benito C, Palomo T. No association between dorsolateral prefrontal gray matter deficit and N-acetyl aspartate ratios in schizophrenia. Neuropsychobiology 2006; 54(3):171–178

    Article  PubMed  CAS  Google Scholar 

  52. Molina V, Sánchez J, Sanz J et al. Dorsolateral prefrontal N-acetyl-aspartate concentration in male patients with chronic schizophrenia and with chronic bipolar disorder. Eur Psychiatry 2007; 22(8):505–512

    Article  PubMed  CAS  Google Scholar 

  53. O’Neill J, Levitt J, Caplan R et al. 1H MRSI evidence of metabolic abnormalities in childhood-onset schizophrenia. Neuroimage 2004; 21(4):1781–1789

    Article  PubMed  Google Scholar 

  54. Ohrmann P, Siegmund A, Suslow T et al. Evidence for glutamatergic neuronal dysfunction in the prefrontal cortex in chronic but not in first-episode patients with schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr Res 2005; 73(2–3):153–157

    Article  PubMed  Google Scholar 

  55. Ohrmann P, Siegmund A, Suslow T et al. Cognitive impairment and in vivo metabolites in first-episode neuroleptic-naive and chronic medicated schizophrenic patients: a proton magnetic resonance spectroscopy study. J Psychiatr Res 2007; 41(8):625–634

    Article  PubMed  Google Scholar 

  56. Omori M, Pearce J, Komoroski RA et al. In vitro 1H-magnetic resonance spectroscopy of postmortem brains with schizophrenia. Biol Psychiatry 1997; 42(5):359–366

    Article  PubMed  CAS  Google Scholar 

  57. Omori M, Murata T, Kimura H et al. Thalamic abnormalities in patients with schizophrenia revealed by proton magnetic resonance spectroscopy. Psychiatry Res 2000; 98(3):255–162

    Google Scholar 

  58. Rusch N, Tebartz van Elst L, Valerius G et al. Neurochemical and structural correlates of executive dysfunction in schizophrenia. Schizophr Res 2008; 99(1–3):155–163

    Article  PubMed  Google Scholar 

  59. Shimizu E, Hashimoto K, Ochi S et al. Posterior cingulate gyrus metabolic changes in chronic schizophrenia with generalized cognitive deficits. J Psychiatr Res 2007; 41(1–2):49–56

    Article  PubMed  Google Scholar 

  60. Sigmudsson T, Maier M, Toone BK et al. Frontal lobe N-acetylaspartate correlates with psychopathology in schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr Res 2003; 64(1):63–71

    Article  Google Scholar 

  61. Stanley JA, Vemulapalli M, Nutche J et al. Reduced N-acetyl-aspartate levels in schizophrenia patients with a younger onset age: a single-voxel 1H spectroscopy study. Schizophr Res 2007; 93(1–3):23–32

    Article  PubMed  Google Scholar 

  62. Steel RM, Bastin ME, McConnell S et al. Diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy (1H MRS) in schizophrenic subjects and normal controls. Psychiatry Res 2001; 106(3):161–170

    Article  PubMed  CAS  Google Scholar 

  63. Steen RG, Hamer RM, Lieberman JA. Measurement of brain metabolites by 1H magnetic resonance spectroscopy in patients with schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology 2005; 30(11):1949–1962

    Article  PubMed  CAS  Google Scholar 

  64. Szulc A, Galinska B, Tarasow E et al. [Clinical and neuropsychological correlates of proton magnetic resonance spectroscopy detected metabolites in brains of first-episode and schizophrenic patients] [Article in Polish]. Psychiatr Pol 2003; 37(6):977–988

    PubMed  Google Scholar 

  65. Szulc A, Galinska B, Tarasow E et al. The effect of risperidone on metabolite measures in the frontal lobe, temporal lobe, and thalamus in schizophrenic patients. A proton magnetic resonance spectroscopy (1H MRS). Pharmacopsychiatry 2005; 38(5):214–219

    Article  PubMed  CAS  Google Scholar 

  66. Szulc A, Galinska B, Tarasow E et al. N-acetylaspartate (NAA) levels in selected areas of the brain in patients with chronic schizophrenia treated with typical and atypical neuroleptics: a proton magnetic resonance spectroscopy (1H MRS) study. Med Sci Monit 2007; 13(Suppl 1):17–22

    PubMed  Google Scholar 

  67. Szulc A. [First and second generation antipsychotics and morphological and neurochemical brain changes in schizophrenia. Review of magnetic resonance imaging and proton spectroscopy findings]. [Article in Polish]. Psychiatr Pol 2007; 41(3):329–338

    PubMed  Google Scholar 

  68. Tang CY, Friedman J, Shungu D et al. Correlations between Diffusion Tensor Imaging (DTI) and Magnetic Resonance Spectroscopy (1H MRS) in schizophrenic patients and normal controls. BMC Psychiatry 2007; 7:25

    Article  PubMed  Google Scholar 

  69. Zabala A, Sanchez-Gonzalez J, Parellada M et al. Findings of proton magnetic resonance spectometry in the dorsolateral prefrontal cortex in adolescents with first episodes of psychosis. Psychiatry Res 2007; 156(1):33–42

    Article  PubMed  Google Scholar 

  70. Tanaka Y, Obata T, Sassa T et al. Quantitative magnetic resonance spectroscopy of schizophrenia: relationship between decreased N-acetylaspartate and frontal lobe dysfunction. Psychiatry Clin Neurosci 2006; 60(3):365–372

    Article  PubMed  Google Scholar 

  71. Wood SJ, Berger GE, Lambert M et al. Prediction of functional outcome 18 months after a first psychotic episode: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry 2006; 63(9):969–976

    Article  PubMed  CAS  Google Scholar 

  72. Théberge J, Al-Semaan Y, Drost DJ et al. Duration of untreated psychosis vs. N-acetylaspartate and choline in first episode schizophrenia: a 1H magnetic resonance spectroscopy study at 4.0 Tesla. Psychiatry Res 2004; 131(2):107–114

    Article  PubMed  CAS  Google Scholar 

  73. Tibbo P, Hanstock CC, Asghar S, Silverstone P, Allen PS. Proton magnetic resonance spectroscopy (1H-MRS) of the cerebellum in men with schizophrenia. J Psychiatry Neurosci 2000; 25(5):509–512

    PubMed  CAS  Google Scholar 

  74. Wood SJ, Berger GE, Velakoulis D et al. Proton magnetic resonance spectroscopy in first episode psychosis and ultra high-risk individuals. Schizophr Bull 2003; 29(4):831–843

    Article  PubMed  Google Scholar 

  75. Yamasue H, Fukui T, Fukuda R et al. 1H-MR spectroscopy and gray matter volume of the anterior cingulate cortex in schizophrenia. Neuroreport 2002; 13(16):2133–2137

    Article  PubMed  CAS  Google Scholar 

  76. Bartha R, Williamson PC, Drost DJ et al. Measurement of glutamate and glutamine in the medial prefrontal cortex of never-treated schizophrenic patients and healthy controls by proton magnetic resonance spectroscopy. Arch Gen Psychiatry 1997; 54(10):959–965

    Article  PubMed  CAS  Google Scholar 

  77. Bartha R, Al-Semaan Y, Williamson PC et al. A short echo proton magnetic resonance spectroscopy study of the left mesial-temporal lobe in first-onset schizophrenic patients. Biol Psychiatry 1999; 45(11):1403–1411

    Article  PubMed  CAS  Google Scholar 

  78. Kegeles LS, Shungu DC, Anjilvel S et al. Hippocampal pathology in schizophrenia: magnetic resonance imaging and spectroscopy studies. Psychiatry Res 2000; 98(3):163–175

    Article  PubMed  CAS  Google Scholar 

  79. Stanley JA, Williamson PC, Drost DJ et al. An in vivo proton magnetic resonance spectroscopy study of schizophrenia patients. Schizophr Bull 1996; 22(4):597–609

    Article  PubMed  CAS  Google Scholar 

  80. Stone JM, Day F, Tsagaraki H et al. Glutamate Dysfunction in People with Prodromal Symptoms of Psychosis: Relationship to Gray Matter Volume. Biol Psychiatry 2009 Jun 24 [Epub ahead of print] 2009

    Google Scholar 

  81. Théberge J, Bartha R, Drost DJ et al. Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers. Am J Psychiatry 2002; 159(11):1944–1946

    Article  PubMed  Google Scholar 

  82. Théberge J, Al-Semaan Y, Williamson PC et al. Glutamate and glutamine in the anterior cingulate and thalamus of medicated patients with chronic schizophrenia and healthy comparison subjects measured with 4.0-T proton MRS. Am J Psychiatry 2003; 160(12):2231–2233

    Article  PubMed  Google Scholar 

  83. Théberge J, Williamson KE, Aoyama N et al. Longitudinal grey-matter and glutamatergic losses in first-episode schizophrenia. Br J Psychiatry 2007; 191:325–334

    Article  PubMed  Google Scholar 

  84. Tibbo P, Hanstock CC, Valaikalayil A, Allen P. 3-T proton MRS investigation of glutamate and glutamine in adolescents at high genetic risk for schizophrenia. Am J Psychiatry 2004; 161(6):1116–1118

    Article  PubMed  Google Scholar 

  85. Wood SJ, Yucel M, Wellard RM et al. Evidence for neuronal dysfunction in the anterior cingulate of patients with schizophrenia: a proton magnetic resonance spectroscopy study at 3 T. Schizophr Res 2007; 94(1–3):328–331

    Article  PubMed  Google Scholar 

  86. Choe BY, Kim KT, Suh TS et al. 1H magnetic resonance spectroscopy characterization of neuronal dysfunction in drug-naive, chronic schizophrenia. Acad Radiol 1994; 1(3):211–216

    Article  PubMed  CAS  Google Scholar 

  87. Fukuzako H, Fukuzako T, Hashiguchi T, Kodama S, Takigawa M, Fujimoto T. Changes in levels of phosphorus metabolites in temporal lobes of drug-naive schizophrenic patients. Am J Psychiatry 1999; 156(8):1205–1208

    PubMed  CAS  Google Scholar 

  88. Jensen JE, Miller J, Williamson PC et al. Focal changes in brain energy and phospholipid metabolism in first-episode schizophrenia: 31P-MRS chemical shift imaging study at 4 Tesla. Br J Psychiatry 2004; 184:409–415

    Article  PubMed  Google Scholar 

  89. Jensen JE, Miller J, Williamson PC et al. Grey and white matter differences in brain energy metabolism in first episode schizophrenia: 31P-MRS chemical shift imaging at 4 Tesla. Psychiatry Res 2006; 146(2):127–135

    Article  PubMed  CAS  Google Scholar 

  90. Pettegrew JW, Keshavan MS, Panchalingam K et al. Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. A pilot study of the dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Arch Gen Psychiatry 1991; 48(6):563–568

    Article  PubMed  CAS  Google Scholar 

  91. Stanley JA, Williamson PC, Drost DJ et al. An in vivo study of the prefrontal cortex of schizophrenic patients at different stages of illness via phosphorus magnetic resonance spectroscopy. Arch Gen Psychiatry 1995; 52(5):399–406

    Article  PubMed  CAS  Google Scholar 

  92. Stanley JA, Williamson PC, Drost DJ et al. Membrane phospholipid metabolism and schizophrenia: an in vivo 31P-MR spectroscopy study. Schizophr Res 1994; 13(3):209–215

    Article  PubMed  CAS  Google Scholar 

  93. Kapur S, Seeman P. Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics?: A new hypothesis. Am J Psychiatry 2001; 158(3):360–369

    Article  PubMed  CAS  Google Scholar 

  94. Seeman P. Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1987; 1(2):133–152

    Article  PubMed  CAS  Google Scholar 

  95. Williamson PC. Schizophrenia as a brain disease. Arch Neurol 1993; 50(10):1096–1097

    Article  PubMed  CAS  Google Scholar 

  96. Drug Utilization, 2009, Top ten therapeutic Classes. IMS Health Canada. 2009. Ref Type: Electronic Citation

    Google Scholar 

  97. Rosack J. New studies raise questions about antipsychotic efficacy. Psychiatr News 2003; 38(13):18

    Google Scholar 

  98. Carlsson A, Hansson LO, Waters N, Carlsson ML. A glutamatergic deficiency model of schizophrenia. Br J Psychiatry Suppl 1999; 37:2–6

    PubMed  Google Scholar 

  99. Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R. NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl) 2003; 169(3–4):215–233

    Article  CAS  Google Scholar 

  100. Lahti AC, Holcomb J, Medoff DR, Tamminga CA. Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 1995; 6(6):869–872

    Article  PubMed  CAS  Google Scholar 

  101. Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA. Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 2009; 25(4):455–467

    Article  Google Scholar 

  102. Alexander GE, Crutcher MD, DeLong MR. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 1990; 85:119–146

    Article  PubMed  CAS  Google Scholar 

  103. Devinsky O, Luciano D. The contributions of the cingulate cortex to human behaviour. In: Voyt BA, Gabriel M, editors. Neurobiology of the cingulate cortex and limbic thalamus. Boston, MA, Birkhauser; 1993, 527–556

    Google Scholar 

  104. Graybiel AM. Building action repertoires: memory and learning functions of the basal ganglia. Curr Opin Neurobiol 1995; 5(6):733–741

    Article  PubMed  CAS  Google Scholar 

  105. Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995; 52(12):998–1007

    Article  PubMed  CAS  Google Scholar 

  106. Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M. Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 1999; 56(1):29–36

    Article  PubMed  CAS  Google Scholar 

  107. Goff DC, Tsai G, Levitt J et al. A placebo-controlled trial of D-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch Gen Psychiatry 1999; 56(1):21–27

    Article  PubMed  CAS  Google Scholar 

  108. Goff DC, Henderson DC, Evins AE, Amico E. A placebo-controlled crossover trial of D-cycloserine added to clozapine in patients with schizophrenia. Biol Psychiatry 1999; 45(4):512–514

    Article  PubMed  CAS  Google Scholar 

  109. Evins AE, Fitzgerald SM, Wine L, Rosselli R, Goff DC. Placebo-controlled trial of glycine added to clozapine in schizophrenia. Am J Psychiatry 2000; 157(5):826–828

    Article  PubMed  CAS  Google Scholar 

  110. Heresco-Levy U, Ermilov M, Shimoni J, Shapira B, Silipo G, Javitt DC. Placebo-controlled trial of D-cycloserine added to conventional neuroleptics, olanzapine, or risperidone in schizophrenia. Am J Psychiatry 2002; 159(3):480–482

    Article  PubMed  Google Scholar 

  111. Goff DC, Herz L, Posever T et al. A six-month, placebo-controlled trial of D-cycloserine co-administered with conventional antipsychotics in schizophrenia patients. Psychopharmacology (Berl) 2005; 179(1):144–150

    Article  CAS  Google Scholar 

  112. Patil ST, Zhang L, Martenyi F et al. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 2007; 13(9):1102–1107

    Article  PubMed  CAS  Google Scholar 

  113. Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 1946; 69:37–38

    Article  CAS  Google Scholar 

  114. Bloch F, Hansen WW, Packard M. Nuclear induction. Phys Rev 1946; 69:127

    Article  Google Scholar 

  115. Proctor WG, Yu FC. The dependence of a nuclear magnetic resonance frequency upon chemical compound. Phys Rev 1950; 77:717

    Article  CAS  Google Scholar 

  116. Dickinson WC. Dependence of F19 nuclear resonance absorption on chemical compound. Phys Rev 1950; 77:736

    Article  CAS  Google Scholar 

  117. Moon RB, Richards JH. Determination of intracellular pH by 31P magnetic resonance. J Biol Chem 1873; 248:7276–7278

    Google Scholar 

  118. Lauterbur PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 1973; 242:190–191

    Article  CAS  Google Scholar 

  119. Mansfield P, Maudsley AA. Medical imaging by NMR. Br J Radiol 1977; 50(591):188–194

    Article  PubMed  CAS  Google Scholar 

  120. Redfield AG, Gupta RK. Pulsed Fourier transform NMR spectrometer for use with H2O solutions. J Chem Phys 1971; 54:1418–1419

    Article  CAS  Google Scholar 

  121. Rothman DL, Behar KL, Hetherington HP, Shulman RG. Homonuclear 1H double-resonance difference spectroscopy of the rat brain in vivo. Proc Natl Acad Sci USA 1984; 81(20):6330–6334

    Article  PubMed  CAS  Google Scholar 

  122. Brown TR, Kincaid BM, Ugurbil K. NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci USA 1982; 79(11):3523–3526

    Article  PubMed  CAS  Google Scholar 

  123. Hanson LG. Is quantum mechanics necessary for understanding magnetic resonance? Concepts in Magnetic Resonance, Part A 2008; 32A(5):329–340

    Article  Google Scholar 

  124. Seiyama A, Seki J, Iwamoto M, Yanagida T. Paramagnetic artifact and safety criteria for human brain mapping. Dyn Med 2005; 4(1):5

    Article  PubMed  Google Scholar 

  125. Graff R. In vivo NMR Spectroscopy: Principles and Techniques. New York, NY, John Wiley & Sons; 1999

    Google Scholar 

  126. Magistretti PJ, Pellerin L, Rothman DL, Shulman RG. Energy on demand. Science 1999; 283(5401):496–497

    Article  PubMed  CAS  Google Scholar 

  127. Goldman AL, Pezawas L, Mattay VS et al. Widespread reductions of cortical thickness in schizophrenia and spectrum disorders and evidence of heritability. Arch Gen Psychiatry 2009; 66(5):467–477

    Article  PubMed  Google Scholar 

  128. Honea R, Crow TJ, Passingham D, MacKay CE. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphology studies. Am J Psychiatry 2005; 162(12):2233–2245

    Article  PubMed  Google Scholar 

  129. Wright IC, Rabe-Hesketh S, Woodruff PW, David AS, Murray RM, Bullmore ET. Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 2000; 157(1):16–25

    PubMed  CAS  Google Scholar 

  130. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis, I: segmentation and surface reconstruction. Neuroimage 1999; 9(2):179–194

    Article  PubMed  CAS  Google Scholar 

  131. Suddath RL, Christison GW, Torrey EF, Casanova MF, Weinberger DR. Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med 1990; 322(12):789–794

    Article  PubMed  CAS  Google Scholar 

  132. Kuperberg GR, Broome MR, McGuire PK et al. Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 2003; 60(9):878–888

    Article  PubMed  Google Scholar 

  133. Narr KL, Bilder RM, Toga AW et al. Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cereb Cortex 2005; 15(6):708–719

    Article  PubMed  Google Scholar 

  134. Narr KL, Toga A, Szeszko PR et al. Cortical thinning in cingulate and occipital cortices in first episode schizophrenia. Biol Psychiatry 2005; 58(1):32–40

    Article  PubMed  Google Scholar 

  135. White T, Andreasen NC, Nopoulos P, Magnotta V. Gyrification abnormalities in childhood- and adolescent-onset schizophrenia. Biol Psychiatry 2003; 54(4):418–426

    Article  PubMed  Google Scholar 

  136. Sporn AL, Greenstein DK, Gogtay N et al. Progressive brain volume loss during adolescence in childhood-onset schizophrenia. Am J Psychiatry 2003; 160(12):2181–2189

    Article  PubMed  Google Scholar 

  137. Thompson PM, Vidal C, Giedd JN et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 2001; 98(20):11650–11655

    Article  PubMed  CAS  Google Scholar 

  138. Cahn W, Holshoff Pol HE, Lems EB, van Haren NE, Schnack HG, Van Der Linden JA. Brain volume changes in first episode schizophrenia: a 1-year follow-up study. Arch Gen Psychiatry 2004; 59:1002–1010

    Article  Google Scholar 

  139. Ho BC, Andreasen NC, Nopoulos P, Arndt S, Magnotta V, Flaum M. Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Arch Gen Psychiatry 2003; 60(6):585–594

    Article  PubMed  Google Scholar 

  140. Cahn W, van Haren NE, Hulshoff Pol HE et al. Brain volume changes in the first year of illness and 5-year outcome of schizophrenia. Br J Psychiatry 2006; 189:381–382

    Article  PubMed  CAS  Google Scholar 

  141. Cahn W, Rais M, Stigter FP et al. Psychosis and brain volume changes during the first five years of schizophrenia. Eur Neuropsychopharmacol 2009; 19(2):147–151

    Article  PubMed  CAS  Google Scholar 

  142. van Haren NE, Hulshoff Pol HE, Schnack HG et al. Focal gray matter changes in schizophrenia across the course of the illness: a 5-year follow-up study. Neuropsychopharmacology 2007; 32(10):2057–2066

    Article  PubMed  Google Scholar 

  143. Mathalon DH, Sullivan EV, Lim KO, Pfefferbaum A. Progressive brain volume changes and the clinical course of schizophrenia in men: a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry 2001; 58(2):148–157

    Article  PubMed  CAS  Google Scholar 

  144. Wood SJ, Velakoulis D, Smith DJ et al. A longitudinal study of hippocampal volume in first episode psychosis and chronic schizophrenia. Schizophr Res 2001; 52(1–2):37–46

    Article  PubMed  CAS  Google Scholar 

  145. Onitsuka T, Nestor PG, Gurrera RJ et al. Association between reduced extraversion and right posterior fusiform gyrus gray matter reduction in chronic schizophrenia. Am J Psychiatry 2005; 162(3):599–601

    Article  PubMed  Google Scholar 

  146. Kasai K, Shenton ME, Salisbury DF et al. Progressive decrease of left Heschl gyrus and planum temporale gray matter volume in first-episode schizophrenia: a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry 2003; 60(8):766–775

    Article  PubMed  Google Scholar 

  147. Kasai K, Shenton ME, Salisbury DF et al. Progressive decrease of left superior temporal gyrus gray matter volume in patients with first-episode schizophrenia. Am J Psychiatry 2003; 160(1):156–164

    Article  PubMed  Google Scholar 

  148. Toulopoulou T, Grech A, Morris RG et al. The relationship between volumetric brain changes and cognitive function: a family study on schizophrenia. Biol Psychiatry 2004; 56(6):447–453

    Article  PubMed  Google Scholar 

  149. Gazdzinski S, Durazzo TC, Studholme C, Song E, Banys P, Meyerhoff DJ. Quantitative brain MRI in alcohol dependence: preliminary evidence for effects of concurrent chronic cigarette smoking on regional brain volumes. Alcohol Clin Exp Res 2005; 29(8):1484–1495

    Article  PubMed  CAS  Google Scholar 

  150. Laakso A, Vaurio O, Savolainen L et al. A volumetric MRI study of the hippocampus in type 1 and 2 alcoholism. Behav Brain Res 2000; 109(2):177–186

    Article  PubMed  CAS  Google Scholar 

  151. Schneider-Axmann T, Kamer T, Moroni M et al. Relation between cerebrospinal fluid, gray matter and white matter changes in families with schizophrenia. J Psychiatr Res 2006; 40(7):646–655

    Article  PubMed  Google Scholar 

  152. Nudmamud S, Reynolds LM, Reynolds GP. N-acetylaspartate and N-Acetylaspartylglutamate deficits in superior temporal cortex in schizophrenia and bipolar disorder: a postmortem study. Biol Psychiatry 2003; 53(12):1138–1141

    Article  PubMed  CAS  Google Scholar 

  153. Mullins PG, Rowland LM, Bustillo J, Bedrick EJ, Lauriello J, Brooks WM. Reproducibility of 1H-MRS measurements in schizophrenic patients. Magn Reson Med 2003; 50(4):704–707

    Article  PubMed  CAS  Google Scholar 

  154. Urenjak J, Williams SR, Gadian DG, Noble M. Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem 1992; 59(1):55–61

    Article  PubMed  CAS  Google Scholar 

  155. Urenjak J, Williams SR, Gadian DG, Noble M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 1993; 13(3):981–989

    PubMed  CAS  Google Scholar 

  156. Meyerhoff DJ, MacKay S, Bachman L et al. Reduced brain N-acetylaspartate suggests neuronal loss in cognitively impaired human immunodeficiency virus-seropositive individuals: in vivo 1H magnetic resonance spectroscopic imaging. Neurology 1993; 43(3 Pt 1):509–515

    Article  PubMed  CAS  Google Scholar 

  157. Chakraborty G, Mekala P, Yahya D, Wu G, Ledeen RW. Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. J Neurochem 2001; 78(4):736–745

    Article  PubMed  CAS  Google Scholar 

  158. Baslow MH. Brain N-acetylaspartate as a molecular water pump and its role in the etiology of Canavan disease: a mechanistic explanation. J Mol Neurosci 2003; 21(3):185–190

    Article  PubMed  CAS  Google Scholar 

  159. Baslow MH. N-acetylaspartate in the vertebrate brain: metabolism and function. Neurochem Res 2003; 28(6):941–953

    Article  PubMed  CAS  Google Scholar 

  160. Rael LT, Thomas GW, Bar-Or R, Craun ML, Bar-Or D. An anti-inflammatory role for N-acetyl aspartate in stimulated human astroglial cells. Biochem Biophys Res Commun 2004; 319(3):847–853

    Article  PubMed  CAS  Google Scholar 

  161. Baslow MH, Suckow RF, Gaynor K et al. Brain damage results in down-regulation of N-acetylaspartate as a neuronal osmolyte. Neuromolecular Med 2003; 3(2):95–104

    Article  PubMed  CAS  Google Scholar 

  162. Reynolds GP, Harte MK. The neuronal pathology of schizophrenia: molecules and mechanisms. Biochem Soc Trans 2007; 35(Pt 2):433–436

    Article  PubMed  CAS  Google Scholar 

  163. Goff DC, Coyle JT. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 2001; 158(9):1367–1377

    Article  PubMed  CAS  Google Scholar 

  164. Théberge J, Al-Semaan Y, Jensen JE et al. Comparative study of proton and phosphorus magnetic resonance spectroscopy in schizophrenia at 4 Tesla. Psychiatry Res 2004; 132(1):33–39

    Article  PubMed  Google Scholar 

  165. Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD. Neuronal and glial metabolite content of the epileptogenic human hippocampus. Ann Neurol 2002; 52(5):635–642

    Article  PubMed  CAS  Google Scholar 

  166. Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995; 52(12):998–1007

    Article  PubMed  CAS  Google Scholar 

  167. Coyle-JT, Tsai G, Goff D. Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. Ann N Y Acad Sci 2003 Nov; 1003:318–27 Click here to read Links 2003; 1003:318–327

    CAS  Google Scholar 

  168. Stone JM, Morrison PD, Pilowsky LS. Glutamate and dopamine dysregulation in schizophrenia – a synthesis and selective review. J Psychopharmacol 2007; 21(4):440–452

    Article  PubMed  CAS  Google Scholar 

  169. Deutsch SI, Rosse RB, Schwartz BL, Mastropaolo J. A revised excitotoxic hypothesis of schizophrenia: therapeutic implications. Clin Neuropharmacol 2001; 24(1):43–49

    Article  PubMed  CAS  Google Scholar 

  170. Tsai SJ. Central N-acetyl aspartylglutamate deficit: a possible pathogenesis of schizophrenia. Med Sci Monit 2005; 11(9):HY39–HY45

    Google Scholar 

  171. Lorrain DS, Baccei CS, Bristow LJ, Anderson JJ, Varney MA. Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 2003; 117(3):697–706

    Article  PubMed  CAS  Google Scholar 

  172. Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 1997; 17(8):2921–2927

    PubMed  CAS  Google Scholar 

  173. Rowland LM, Bustillo JR, Mullins PG et al. Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: a 4-T proton MRS study. Am J Psychiatry 2005; 162(2):394–396

    Article  PubMed  Google Scholar 

  174. Sharp FR, Tomitaka M, Bernaudin M, Tomitaka S. Psychosis: pathological activation of limbic thalamocortical circuits by psychomimetics and schizophrenia? Trends Neurosci 2001; 24(6):330–334

    Article  PubMed  CAS  Google Scholar 

  175. Abbott C, Bustillo J. What have we learned from proton magnetic resonance spectroscopy about schizophrenia? A critical update. Curr Opin Psychiatry 2006; 19(2):135–139

    Article  PubMed  Google Scholar 

  176. Harrison PJ. Metabotropic glutamate receptor agonists for schizophrenia. Br J Psychiatry 2008; 192(2):86–87

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Théberge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Théberge, J. (2010). Assessing In Vivo Neurodegeneration in Schizophrenia Using Magnetic Resonance. In: Ritsner, M. (eds) Brain Protection in Schizophrenia, Mood and Cognitive Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8553-5_4

Download citation

Publish with us

Policies and ethics